We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We have investigated the influence in volumetric-modulated arc therapy (VMAT) plans by a sequence of increment of gantry angle (IGA) in definitive radiotherapy treatment for cervical cancer. The plans are quantitatively analysed in terms of conformity index (CI), heterogeneity index (HI), dose–gradient index (DGI), target coverage (TC) by prescription dose, monitor unit (MU) usage, control points (CPs) and dose to organs.
Materials and Methods:
In this retrospective study, we selected 27 patients with cervical cancer having aged between 54 and 69. All the patients enrolled in this study were at T3N1M0 stage of cervical cancer. The prescription dose to planning target volume (PTV) was 50 Gy and was administered in 2 Gy/fraction through VMAT technique. VMAT plans were optimised by varying the parameter ‘IGA’ as 10, 20, 30 and 40°.
Results:
Homogenous dose distribution within PTV and TC by prescription dose was significantly enhanced (p < 0·05) with larger IGA. The difference between volume receiving 15 Gy (V15Gy) in bowel was up to 10% with larger IGA (30 and 40°) and V25Gy in femoral head was up to 3% with smaller IGA (10 and 20°). CPs were enhanced and MU usage was reduced with larger IGA (30 and 40°). IGA 40° had reduced the MU usage than IGA 30° but the CI and DGI were compromised due to large MLC field segments.
Conclusion:
This study recommends that the larger IGA could yield better results when the number of sectors is even, for a cervical cancer patient. However, more data from more patients need to be obtained and analysed to make this an evidence-based hypothesis.
The aim of this study is to evaluate the influence of flattened and flattening filter-free (FFF) beam 6 MV photon beam for liver stereotactic body radiation therapy by using volumetric modulated arc therapy (VMAT) technique in deep inspiration breath hold (DIBH) and free breathing condition.
Materials and methods
Eight liver metastasis patients (one to three metastasis lesions) were simulated in breath hold and free breathing condition. VMAT-based treatment plans were created for a prescription dose of 50 Gy in 10 fractions, using a 230° coplaner arc and 60° non-coplanar arc for both DIBH and free breathing study set. Treatment plans were evaluated for planning target volume (PTV) dose coverage, conformity and hot spots. Parallel and serial organs at risk were compared for average and maximum dose, respectively. Dose spillages were evaluated for different isodose volumes from 5 to 80%.
Result
Mean D98% (dose received by 98% target volume) for FFF in DIBH, flattened beam in DIBH, FFF in free breathing and flatten beam in free breathing dataset were 48·9, 47·81, 48·5 and 48·3 Gy, respectively. D98% was not statistically different between FFF and flatten beam (p = 0·34 and 0·69 for DIBH and free breathing condition). PTV V105% (volume receiving 105% dose) for the same set were 3·76, 0·25, 1·2 and 0·4%, respectively. Mean heterogeneity index for all study sets and beam models varies between 1·05 and 1·07. Paddik conformity index using unflattened and flattened beam in DIBH at 98% prescription dose were 0·91 and 0·79, respectively. Maximum variation of isodose volume was observed for I-5%, which was ranging between 2288·8 and 2427·2 cm3. Increase in isodose value shows a diminishing difference in isodose volumes between different techniques. DIBH yields a significant reduction in the chest wall dose compared with free breathing condition. Average monitor units for FFF beam in DIBH, flattened beam in DIBH, FFF beam in free breathing CT dataset and flattened beam in free breathing CT dataset were 1318·6 ± 265·1, 1940·3 ± 287·6, 1343·3 ± 238·1 and 2192·5 ± 252·6 MU.
Conclusion
DIBH and FFF is a good combination to reduce the treatment time and to achieve better tumour conformity. No other dosimetric gain was observed for FFF in either DIBH or free breathing condition.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.