We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Guideline-based tobacco treatment is infrequently offered. Electronic health record-enabled patient-generated health data (PGHD) has the potential to increase patient treatment engagement and satisfaction.
Methods:
We evaluated outcomes of a strategy to enable PGHD in a medical oncology clinic from July 1, 2021 to December 31, 2022. Among 12,777 patients, 82.1% received a tobacco screener about use and interest in treatment as part of eCheck-in via the patient portal.
Results:
We attained a broad reach (82.1%) and moderate response rate (30.9%) for this low-burden PGHD strategy. Patients reporting current smoking (n = 240) expressed interest in smoking cessation medication (47.9%) and counseling (35.8%). As a result of patient requests via PGHD, most tobacco treatment requests by patients were addressed by their providers (40.6–80.3%). Among patients with active smoking, those who received/answered the screener (n = 309 ) were more likely to receive tobacco treatment compared with usual care patients who did not have the patient portal (n = 323) (OR = 2.72, 95% CI = 1.93–3.82, P < 0.0001) using propensity scores to adjust for the effect of age, sex, race, insurance, and comorbidity. Patients who received yet ignored the screener (n = 1024) compared with usual care were also more likely to receive tobacco treatment, but to a lesser extent (OR = 2.20, 95% CI = 1.68–2.86, P < 0.0001). We mapped observed and potential benefits to the Translational Science Benefits Model (TSBM).
Discussion:
PGHD via patient portal appears to be a feasible, acceptable, scalable, and cost-effective approach to promote patient-centered care and tobacco treatment in cancer patients. Importantly, the PGHD approach serves as a real world example of cancer prevention leveraging the TSBM.
We initiate a systematic study of generic stability independence and introduce the class of treeless theories in which this notion of independence is particularly well behaved. We show that the class of treeless theories contains both binary theories and stable theories and give several applications of the theory of independence for treeless theories. As a corollary, we show that every binary NSOP$_{3}$ theory is simple.
We develop the theory of Kim-independence in the context of NSOP$_{1}$ theories satisfying the existence axiom. We show that, in such theories, Kim-independence is transitive and that -Morley sequences witness Kim-dividing. As applications, we show that, under the assumption of existence, in a low NSOP$_{1}$ theory, Shelah strong types and Lascar strong types coincide and, additionally, we introduce a notion of rank for NSOP$_{1}$ theories.