We prove a concentration inequality for δ-concave measures over ℝn. Using this result, we study the moments of order q of a norm with respect to a δ-concave measure over ℝn. We obtain a lower bound for q∈ ]−1, 0] and an upper bound for q∈ ]0,+ ∞[ in terms of the measure of the unit ball associated to the norm. This allows us to give Kahane-Khinchine type inequalities for negative exponent.