We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Attentional impairment is a core cognitive feature of major depressive disorder (MDD) and bipolar disorder (BD). However, little is known of the characteristics of response time (RT) distributions from attentional tasks. This is crucial to furthering our understanding of the profile and extent of cognitive intra-individual variability (IIV) in mood disorders.
Method.
A computerized sustained attention task was administered to 138 healthy controls and 158 patients with a mood disorder: 86 euthymic BD, 33 depressed BD and 39 medication-free MDD patients. Measures of IIV, including individual standard deviation (iSD) and coefficient of variation (CoV), were derived for each participant. Ex-Gaussian (and Vincentile) analyses were used to characterize the RT distributions into three components: mu and sigma (mean and standard deviation of the Gaussian portion of the distribution) and tau (the ‘slow tail’ of the distribution).
Results.
Compared with healthy controls, iSD was increased significantly in all patient samples. Due to minimal changes in average RT, CoV was only increased significantly in BD depressed patients. Ex-Gaussian modelling indicated a significant increase in tau in euthymic BD [Cohen's d = 0.39, 95% confidence interval (CI) 0.09–0.69, p = 0.011], and both sigma (d = 0.57, 95% CI 0.07–1.05, p = 0.025) and tau (d = 1.14, 95% CI 0.60–1.64, p < 0.0001) in depressed BD. The mu parameter did not differ from controls.
Conclusions.
Increased cognitive variability may be a core feature of mood disorders. This is the first demonstration of differences in attentional RT distribution parameters between MDD and BD, and BD depression and euthymia. These data highlight the utility of applying measures of IIV to characterize neurocognitive variability and the great potential for future application.
We sought to determine whether the use of currently issued gowns delays initiation of chest compressions and ventilations during cardiopulmonary resuscitation and whether simple gown modifications can reduce this delay.
Methods:
Firefighter defibrillation instructors were allocated into pairs and videotaped while performing standardized cardiac arrest scenarios. Three scenarios were compared: “no gown,” “standard gown” and “modified gown.” Key time intervals were extracted from videotaped data.
Results:
Ninety-five scenarios were analyzed. Mean time interval to chest compression was 39 seconds (95% confidence interval [CI] 34–43) for “no gown” scenarios, 71 seconds (95% CI 66–77) for “standard gown” scenarios and 59 seconds (95% CI 54–63) for “modified gown” scenarios (p < 0.001). Time to first ventilation was 146 seconds (95% CI 134–158), 238 seconds (95% CI 224–253)and 210 seconds (95% CI 198–223) in the 3 groups, respectively (p < 0.001). Post hoc testing showed that the time differences between all groups were statistically significant.
Conclusion:
Standard gowns protect front-line care providers but cause significant delays to chest compressions and ventilations, potentially increasing patient morbidity and mortality. Minor gown modifications, including pre-tied neck straps and longer waist ties that tie in front, allow for easier use and shorter delays to time-critical interventions. Future research is required to reduce care delays while maintaining adequate protection of emergency medical service providers from infectious disease.
Due to their extremely small luminosity compared to the stars they orbit, planets outside our own Solar System are extraordinarily difficult to detect directly in optical light. Careful photometric monitoring of distant stars, however, can reveal the presence of exoplanets via the microlensing or eclipsing effects they induce. The international PLANET collaboration is performing such monitoring using a cadre of semi-dedicated telescopes around the world. Their results constrain the number of gas giants orbiting 1–7 AU from the most typical stars in the Galaxy. Upgrades in the program are opening regions of “exoplanet discovery space” – toward smaller masses and larger orbital radii – that are inaccessible to the Doppler velocity technique.
The near-IR spectrum of the periodic dust making WCpd+O4-5 binary WR 140 was monitored to cover the 2001 periastron passage and maximum colliding-wind activity. The He i λ1.083μm emission-line profile showed the appearence of a subpeak on epochs close to periastron passage. The evolution of the subpeak was consistent with the motion of the stars and the colliding wind region. The appearance and evolution of the emission subpeak suggests that the theoretical 1/r dependence of X-ray flux does not hold, so that there is no need to change the values of eccentricity and epoch of periastron passage derived from the RV orbit. JHK spectra show variations of the continuum and and dilution of the emission lines, in agreement with the production and cooling of dust.
Current models of class II methanol masers are able to describe the brightnesses of the strongest masers and provide a basis for explaining observed line ratios. Determination of the physical parameters in the source requires observational data in many maser transitions. In order to provide observational constraints for models we searched for and detected 7 new methanol masers. This allowed us to constrain the physical parameters of the 3 sources with the greatest number of detected methanol maser lines: W3(OH), NGC6334F, and G345.01 + 1.79. The models accurately account for the fluxes of the bulk of the detected maser lines. Remaining discrepancies most probably reflect the fact that the most prominent components of the different maser lines are formed under different conditions. This is supported by comparison of the line profiles. We outline directions for future studies in the field.
We review the current status and future prospects of the PLANET collaboration, an international team of astronomers performing high-precision photometric monitoring of microlensing events. Our photometric precision and sampling is characterised and the suitability of the database for variable star studies is discussed. Preliminary results on K-giant stability are presented.
Background: In some emergency medical services (EMS) system designs, response time intervals are mandated with monetary penalties for noncompliance. These times are set with the goal of providing rapid, definitive patient care. The time interval of vehicle at scene-to-patient access (VSPA) has been measured, but its effect on response time interval compliance has not been determined.
Purpose:
To determine the effect of the VSPA interval on the mandated code 1 (<9 min) and code 2 (<13 min) response time interval compliance in an urban, public-utility model system.
Methods:
A prospective, observational study used independent third-party riders to collect the VSPA interval for emergency life-threatening (code 1) and emergency nonlife-threatening (code 2) calls. The VSPA interval was added to the 9-1-1 call-to-dispatch and vehicle dispatch-to-scene intervals to determine the total time interval from call received until paramedic access to the patient (9-1-1 call-to-patient access). Compliance with the man dated response time intervals was determined using the traditional time intervals (9-1-1 call-to-scene) plus the VSPA time intervals (9-1-1 call-to-patient access). Chi-square was used to determine statistical significance.
Results:
Of the 216 observed calls, 198 were matched to the traditional time intervals. Sixty three were code 1, and 135 were code 2. Of the code 1 calls, 90.5% were compliant using 9-1-1 call-to-scene intervals dropping to 63.5% using 9-1-1 call-to-patient access intervals (p<0.0005). Of the code 2 calls, 94.1% were compliant using 9-1-1 call-to-scene intervals. Compliance decreased to 83.7% using 9-1-1 call-to-patient access intervals (p = 0.012).
Conclusion:
The addition of the VSPA interval to the traditional time intervals impacts system response time compliance. Using 9-1-1 call-to-scene compliance as a basis for measuring system performance underestimates the time for the delivery of definitive care. This must be considered when response time interval compliances are defined.