We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With your permission, I shall now address you on the subject of the present situation in research in the foundations of mathematics.
Since there remain open questions in this field, I am not in a position to paint a definitive picture of it for you. But it must be pointed out that the situation is not so critical as one could think from listening to those who speak of a foundational crisis. From certain points of view, this expression can be justified; but it could give rise to the opinion that mathematical science is shaken at its roots.
The truth is that the mathematical sciences are growing in complete security and harmony. The ideas of Dedekind, Poincaré, and Hilbert have been systematically developed with great success, without any conflict in the results.
It is only from the philosophical point of view that objections have been raised. They bear on certain ways of reasoning peculiar to analysis and set theory. These modes of reasoning were first systematically applied in giving a rigorous form to the methods of the calculus. [According to them,] the objects of a theory are viewed as elements of a totality such that one can reason as follows: For each property expressible using the notions of the theory, it is [an] objectively determinate [fact] whether there is or there is not an element of the totality which possesses this property.