We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
This paper discusses recent progress made in developing an advanced sp2 carbon-based materials that can be produced by wet coating as a thin layer and processed to form highly ordered arrays of Graphene Nanoribbons (GNRs) that attach to the substrate on edge with their planes parallel to each other. The fabrication method is based on carbonization of organic molecules spatially preordered in crystalline film on the substrate. This material, named Ribtan, can be used to fabricate GNRs films over large areas that exhibit a very smooth film surface and can form strong covalent bonds to the substrate. The width (film thickness) of Ribtan GNRs can be controlled precisely down to a few nanometers. We demonstrated advantage of Ribtan material for application in supercapacitors as well as feasibility for use in transparent electrodes, solid tribological coatings, and thin film transistors.
We report a new method of Thin Crystal Film deposition. In the present paper we describe the method of crystallization, structure, and optical properties of Bisbenzimidazo[2,1-a:1',2',b']anthra[2,1,9-def:6,5,10-d'e'f']-diisoquinoline-6,9-dion (mixture with cis-isomer) (abbreviated DBI PTCA) sulfonation product. The Thin Crystal Film has a thickness of 200-1000 nm, with anisotropic optical properties such as refraction and absorption indices. X-ray diffraction data evidences a lyotropic liquid crystalline state in liquid phase and crystalline state in solid film. Anisotropic optical properties of the film make it useful in optical devices, e.g. liquid crystal displays.
We have developed new polarizing coating materials and processes which enable the fabrication of polarizers for large-area liquid-crystal displays. The polarizing materials are novel discotic surfactants which self-assemble in aqueous solutions to provide a stable liquid-crystalline phase within a wide range of concentrations and temperatures. These lyotropic liquid crystals in an aqueous medium can be spread on a substrate surface by a variety of techniques including a knife-like doctor blade, a rolling cylinder, or a roll-to-roll method. Under the shearing force applied during deposition, the liquid crystals align on the substrate forming a dichroic polarizer. This alignment process allows continuous production of large-area polarizing films at low cost compared with the current technology that requires stretching of the films. Thin coatings can be applied to flexible plastic films, glass, or rigid plastic substrates. Direct coating of the polarizing material on glass eliminates several process steps in liquid-crystal display production since lamination of the polarizing film is no longer required. These new polarizing films have a high optical performance including a polarizing efficiency of above 98% and a dichroic ratio as high as 7.7.
Email your librarian or administrator to recommend adding this to your organisation's collection.