We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Nasal septal perforation is a structural or anatomical defect in the septum. The present study focused on the effects of septal perforation on nasal airflow and nasal patency, investigated using a computer simulation model.
Methods:
The effect of nasal septal perforation size on nasal airflow pattern was analysed using computer-generated, three-dimensional nasal models reconstructed using data from magnetic resonance imaging scans of a healthy human subject. Computer-based simulations using computational fluid dynamics were then conducted to determine nasal airflow patterns.
Results:
The maximum velocity and wall shear stress were found always to occur in the downstream region of the septal perforation, and could potentially cause bleeding in that region, as previously reported. During the breathing process, there was flow exchange and flow reversal through the septal perforation, from the higher flow rate to the lower flow rate nostril side, especially for moderate and larger sized perforations.
Conclusion:
In the breathing process of patients with septal perforations, there is airflow exchange from the higher flow rate to the lower flow rate nostril side, especially for moderate and large sized perforations. For relatively small septal perforations, the amount of cross-flow is negligible. This cross-flow may cause the whistling sound typically experienced by patients.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.