We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Advanced Therapy Medicinal Products (ATMPs) are innovative biologics (gene, cells and tissue-based products) with the potential to treat diseases with significant unmet clinical need. ATMPs pose distinct regulatory, health technology assessment (HTA) and patient access challenges, hence early identification and prioritization of ATMPs is now recognized as a key concern in England. The National Institute for Health Research Innovation Observatory (NIHRIO) uses a robust methodology to identify and monitor health technologies, including ATMPs that meet the remit of key HTA stakeholders in England. This analysis provides a global overview of the current ATMPs pipeline to administer useful insights for policymakers, funders and innovators.
Methods
NIHRIO's database tracks pharmaceuticals from phase I/II onwards, but this analysis focuses on late-stage development. The database (N > 12,000 records) was filtered to identify potential ATMPs using a predefined criteria based on the European Medicine's Agency's classification. Each record is categorized by stage: ‘Active’, (with an estimated three years to European licence); ‘Monitoring’ (in development with no licence date); and ‘Finished’, (output produced/discontinued and no longer tracked). Subsequently, records in ‘Active’ and ‘Monitoring’ were examined further.
Results
Analysis identified 636 ATMPs: five percent ‘Active’, 40 percent ‘Monitoring’ and 55 percent ‘Finished’. ATMPs in the Active/Monitoring stages included: gene therapies (52%), somatic cells (43%) and tissue-engineered products (5%). Of these, 40 percent were oncological with the majority targeting hematological cancers (lymphomas). Prevalent non-oncology areas included musculoskeletal (10%) and ophthalmology (8%). Over one-third of trials were phase IIs, with almost half of all trials were based in the US.
Conclusions
The overarching findings here indicate increasing development of the ATMP pipeline towards indications with significant unmet clinical need. In oncology, the high prevalence of hematological ATMPs is largely due to recent chimeric antigen receptor T cells (CAR-T) innovation. In non-oncology areas, ATMP development is increasing due to advances in regenerative medicine. With a significant number of ATMPs projected to be licenced within three years, and many more in active late-stage trials, HTA bodies and health systems are challenged to prepare for the entry of these innovative therapies.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.