We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article is about Lehn–Lehn–Sorger–van Straten eightfolds $Z$ and their anti-symplectic involution $\iota$. When $Z$ is birational to the Hilbert scheme of points on a K3 surface, we give an explicit formula for the action of $\iota$ on the Chow group of $0$-cycles of $Z$. The formula is in agreement with the Bloch–Beilinson conjectures and has some non-trivial consequences for the Chow ring of the quotient.
Let Y be a smooth complete intersection of three quadrics, and assume the dimension of Y is even. We show that Y has a multiplicative Chow–Künneth decomposition, in the sense of Shen–Vial. As a consequence, the Chow ring of (powers of) Y displays K3-like behaviour. As a by-product of the argument, we also establish a multiplicative Chow–Künneth decomposition for double planes.
We consider Calabi–Yau n-folds X arising from certain hyperplane arrangements. Using Fu–Vial’s theory of distinguished cycles for varieties with motive of abelian type, we show that the subring of the Chow ring of X generated by divisors, Chern classes and intersections of subvarieties of positive codimension injects into cohomology. We also prove Voisin’s conjecture for X, and Voevodsky’s smash-nilpotence conjecture for odd-dimensional X.
We consider a 10-dimensional family of Lehn–Lehn–Sorger–van Straten hyperkähler eightfolds, which have a non-symplectic automorphism of order 3. Using the theory of finite-dimensional motives, we show that the action of this automorphism on the Chow group of 0-cycles is as predicted by the Bloch–Beilinson conjectures. We prove a similar statement for the anti-symplectic involution on varieties in this family. This has interesting consequences for the intersection product of the Chow ring of these varieties.
This note is about certain locally complete families of Calabi–Yau varieties constructed by Cynk and Hulek, and certain varieties constructed by Schreieder. We prove that the cycle class map on the Chow ring of powers of these varieties admits a section, and that these varieties admit a multiplicative self-dual Chow–Künneth decomposition. As a consequence of both results, we prove that the subring of the Chow ring generated by divisors, Chern classes, and intersections of two cycles of positive codimension injects into cohomology via the cycle class map. We also prove that the small diagonal of Schreieder surfaces admits a decomposition similar to that of K3 surfaces. As a by-product of our main result, we verify a conjecture of Voisin concerning zero-cycles on the self-product of Cynk–Hulek Calabi–Yau varieties, and in the odd-dimensional case we verify a conjecture of Voevodsky concerning smash-equivalence. Finally, in positive characteristic, we show that the supersingular Cynk–Hulek Calabi–Yau varieties provide examples of Calabi–Yau varieties with “degenerate” motive.
Voevodsky has conjectured that numerical equivalence and smash-equivalence coincide for algebraic cycles on any smooth projective variety. Building on work of Vial and Kahn–Sebastian, we give some new examples of varieties where Voevodsky's conjecture is verified.
We formulate a conjectural hard Lefschetz property for Chow groups and prove it in some special cases, roughly speaking, for varieties with finite-dimensional motive, and for varieties whose self-product has vanishing middle-dimensional Griõths group. An appendix includes related statements that follow from results of Vial.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.