We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Researchers have studied psychological disorders extensively from a common cause perspective, in which symptoms are treated as independent indicators of an underlying disease. In contrast, the causal systems perspective seeks to understand the importance of individual symptoms and symptom-to-symptom relationships. In the current study, we used network analysis to examine the relationships between and among depression and anxiety symptoms from the causal systems perspective.
Method
We utilized data from a large psychiatric sample at admission and discharge from a partial hospital program (N = 1029, mean treatment duration = 8 days). We investigated features of the depression/anxiety network including topology, network centrality, stability of the network at admission and discharge, as well as change in the network over the course of treatment.
Results
Individual symptoms of depression and anxiety were more related to other symptoms within each disorder than to symptoms between disorders. Sad mood and worry were among the most central symptoms in the network. The network structure was stable both at admission and between admission and discharge, although the overall strength of symptom relationships increased as symptom severity decreased over the course of treatment.
Conclusions
Examining depression and anxiety symptoms as dynamic systems may provide novel insights into the maintenance of these mental health problems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.