We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Urine cultures collected from catheterized patients have a high likelihood of false-positive results due to colonization. We examined the impact of a clinical decision support (CDS) tool that includes catheter information on test utilization and patient-level outcomes.
Methods:
This before-and-after intervention study was conducted at 3 hospitals in North Carolina. In March 2021, a CDS tool was incorporated into urine-culture order entry in the electronic health record, providing education about indications for culture and suggesting catheter removal or exchange prior to specimen collection for catheters present >7 days. We used an interrupted time-series analysis with Poisson regression to evaluate the impact of CDS implementation on utilization of urinalyses and urine cultures, antibiotic use, and other outcomes during the pre- and postintervention periods.
Results:
The CDS tool was prompted in 38,361 instances of urine cultures ordered in all patients, including 2,133 catheterized patients during the postintervention study period. There was significant decrease in urine culture orders (1.4% decrease per month; P < .001) and antibiotic use for UTI indications (2.3% decrease per month; P = .006), but there was no significant decline in CAUTI rates in the postintervention period. Clinicians opted for urinary catheter removal in 183 (8.5%) instances. Evaluation of the safety reporting system revealed no apparent increase in safety events related to catheter removal or reinsertion.
Conclusion:
CDS tools can aid in optimizing urine culture collection practices and can serve as a reminder for removal or exchange of long-term indwelling urinary catheters at the time of urine-culture collection.
Critical shortages of personal protective equipment, especially N95 respirators, during the coronavirus disease 2019 (COVID-19) pandemic continues to be a source of concern. Novel methods of N95 filtering face-piece respirator decontamination that can be scaled-up for in-hospital use can help address this concern and keep healthcare workers (HCWs) safe.
Methods:
A multidisciplinary pragmatic study was conducted to evaluate the use of an ultrasonic room high-level disinfection system (HLDS) that generates aerosolized peracetic acid (PAA) and hydrogen peroxide for decontamination of large numbers of N95 respirators. A cycle duration that consistently achieved disinfection of N95 respirators (defined as ≥6 log10 reductions in bacteriophage MS2 and Geobacillus stearothermophilus spores inoculated onto respirators) was identified. The treated masks were assessed for changes to their hydrophobicity, material structure, strap elasticity, and filtration efficiency. PAA and hydrogen peroxide off-gassing from treated masks were also assessed.
Results:
The PAA room HLDS was effective for disinfection of bacteriophage MS2 and G. stearothermophilus spores on respirators in a 2,447 cubic-foot (69.6 cubic-meter) room with an aerosol deployment time of 16 minutes and a dwell time of 32 minutes. The total cycle time was 1 hour and 16 minutes. After 5 treatment cycles, no adverse effects were detected on filtration efficiency, structural integrity, or strap elasticity. There was no detectable off-gassing of PAA and hydrogen peroxide from the treated masks at 20 and 60 minutes after the disinfection cycle, respectively.
Conclusion:
The PAA room disinfection system provides a rapidly scalable solution for in-hospital decontamination of large numbers of N95 respirators during the COVID-19 pandemic.