We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book, geared toward academic researchers and graduate students, brings together research on all facets of how time and causality relate across the sciences. Time is fundamental to how we perceive and reason about causes. It lets us immediately rule out the sound of a car crash as its cause. That a cause happens before its effect has been a core, and often unquestioned, part of how we describe causality. Research across disciplines shows that the relationship is much more complex than that. This book explores what that means for both the metaphysics and epistemology of causes - what they are and how we can find them. Across psychology, biology, and the social sciences, common themes emerge, suggesting that time plays a critical role in our understanding. The increasing availability of large time series datasets allows us to ask new questions about causality, necessitating new methods for modeling dynamic systems and incorporating mechanistic information into causal models.
Causality is a key part of many fields and facets of life, from finding the relationship between diet and disease to discovering the reason for a particular stock market crash. Despite centuries of work in philosophy and decades of computational research, automated inference and explanation remains an open problem. In particular, the timing and complexity of relationships has been largely ignored even though this information is critically important for prediction, explanation and intervention. However, given the growing availability of large observational datasets including those from electronic health records and social networks, it is a practical necessity. This book presents a new approach to inference (finding relationships from a set of data) and explanation (assessing why a particular event occurred), addressing both the timing and complexity of relationships. The practical use of the method developed is illustrated through theoretical and experimental case studies, demonstrating its feasibility and success.
Thus far, I have discussed the types of causes that will be identified, how they can be represented as logical formulas, and how the definitions hold up to common counterexamples. This chapter addresses how these relationships can be inferred from a set of data. I begin by examining the set of hypotheses to be tested, the types of data one may make inferences from, and how to determine whether formulas are satisfied directly in this data (without first inferring a model). Next, I discuss how to calculate the causal significance measure introduced in the previous chapter (ϵavg) in data, and how to determine which values of this measure are statistically significant. I then address inference of relationships and their timing without prior knowledge of either. The chapter concludes by examining theoretical issues including the computational complexity of the testing procedures.
Testing Prima Facie Causality
Chapter 4 introduced a measure for causal significance and showed how probabilistic causal relationships can be represented using probabilistic temporal logic formulas. This representation allows efficient testing of arbitrarily complex relationships. In this chapter, I adapt standard PCTL model checking procedures to validate formulas directly in a set of time series data without first inferring a model (as this can be computationally complex or infeasible in many cases).