We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The association between cannabis and psychosis is established, but the role of underlying genetics is unclear. We used data from the EU-GEI case-control study and UK Biobank to examine the independent and combined effect of heavy cannabis use and schizophrenia polygenic risk score (PRS) on risk for psychosis.
Methods
Genome-wide association study summary statistics from the Psychiatric Genomics Consortium and the Genomic Psychiatry Cohort were used to calculate schizophrenia and cannabis use disorder (CUD) PRS for 1098 participants from the EU-GEI study and 143600 from the UK Biobank. Both datasets had information on cannabis use.
Results
In both samples, schizophrenia PRS and cannabis use independently increased risk of psychosis. Schizophrenia PRS was not associated with patterns of cannabis use in the EU-GEI cases or controls or UK Biobank cases. It was associated with lifetime and daily cannabis use among UK Biobank participants without psychosis, but the effect was substantially reduced when CUD PRS was included in the model. In the EU-GEI sample, regular users of high-potency cannabis had the highest odds of being a case independently of schizophrenia PRS (OR daily use high-potency cannabis adjusted for PRS = 5.09, 95% CI 3.08–8.43, p = 3.21 × 10−10). We found no evidence of interaction between schizophrenia PRS and patterns of cannabis use.
Conclusions
Regular use of high-potency cannabis remains a strong predictor of psychotic disorder independently of schizophrenia PRS, which does not seem to be associated with heavy cannabis use. These are important findings at a time of increasing use and potency of cannabis worldwide.
Over the past hundred years, American law has gradually – —and controversially –— expanded the speech rights of corporations. O O ver the same period, corporate speech has become pervasive, and now dominates most major channels of communication. C C orporate speech ranges from anodyne commercial appeals to expressions of ethical values to campaign finance payments. W W hen a corporation “speaks,” who should we understand is the real speaker? T T his chapter explores issues of speech attribution for corporations, and argues that the best approach is for attribution to turn on the corporate governance that produces the speech.
Childhood adversity and cannabis use are considered independent risk factors for psychosis, but whether different patterns of cannabis use may be acting as mediator between adversity and psychotic disorders has not yet been explored. The aim of this study is to examine whether cannabis use mediates the relationship between childhood adversity and psychosis.
Methods
Data were utilised on 881 first-episode psychosis patients and 1231 controls from the European network of national schizophrenia networks studying Gene–Environment Interactions (EU-GEI) study. Detailed history of cannabis use was collected with the Cannabis Experience Questionnaire. The Childhood Experience of Care and Abuse Questionnaire was used to assess exposure to household discord, sexual, physical or emotional abuse and bullying in two periods: early (0–11 years), and late (12–17 years). A path decomposition method was used to analyse whether the association between childhood adversity and psychosis was mediated by (1) lifetime cannabis use, (2) cannabis potency and (3) frequency of use.
Results
The association between household discord and psychosis was partially mediated by lifetime use of cannabis (indirect effect coef. 0.078, s.e. 0.022, 17%), its potency (indirect effect coef. 0.059, s.e. 0.018, 14%) and by frequency (indirect effect coef. 0.117, s.e. 0.038, 29%). Similar findings were obtained when analyses were restricted to early exposure to household discord.
Conclusions
Harmful patterns of cannabis use mediated the association between specific childhood adversities, like household discord, with later psychosis. Children exposed to particularly challenging environments in their household could benefit from psychosocial interventions aimed at preventing cannabis misuse.
While cannabis use is a well-established risk factor for psychosis, little is known about any association between reasons for first using cannabis (RFUC) and later patterns of use and risk of psychosis.
Methods
We used data from 11 sites of the multicentre European Gene-Environment Interaction (EU-GEI) case–control study. 558 first-episode psychosis patients (FEPp) and 567 population controls who had used cannabis and reported their RFUC.
We ran logistic regressions to examine whether RFUC were associated with first-episode psychosis (FEP) case–control status. Path analysis then examined the relationship between RFUC, subsequent patterns of cannabis use, and case–control status.
Results
Controls (86.1%) and FEPp (75.63%) were most likely to report ‘because of friends’ as their most common RFUC. However, 20.1% of FEPp compared to 5.8% of controls reported: ‘to feel better’ as their RFUC (χ2 = 50.97; p < 0.001). RFUC ‘to feel better’ was associated with being a FEPp (OR 1.74; 95% CI 1.03–2.95) while RFUC ‘with friends’ was associated with being a control (OR 0.56; 95% CI 0.37–0.83). The path model indicated an association between RFUC ‘to feel better’ with heavy cannabis use and with FEPp-control status.
Conclusions
Both FEPp and controls usually started using cannabis with their friends, but more patients than controls had begun to use ‘to feel better’. People who reported their reason for first using cannabis to ‘feel better’ were more likely to progress to heavy use and develop a psychotic disorder than those reporting ‘because of friends’.
Schizophrenia (SZ), bipolar disorder (BD) and depression (D) run in families. This susceptibility is partly due to hundreds or thousands of common genetic variants, each conferring a fractional risk. The cumulative effects of the associated variants can be summarised as a polygenic risk score (PRS). Using data from the EUropean Network of national schizophrenia networks studying Gene-Environment Interactions (EU-GEI) first episode case–control study, we aimed to test whether PRSs for three major psychiatric disorders (SZ, BD, D) and for intelligent quotient (IQ) as a neurodevelopmental proxy, can discriminate affective psychosis (AP) from schizophrenia-spectrum disorder (SSD).
Methods
Participants (842 cases, 1284 controls) from 16 European EU-GEI sites were successfully genotyped following standard quality control procedures. The sample was stratified based on genomic ancestry and analyses were done only on the subsample representing the European population (573 cases, 1005 controls). Using PRS for SZ, BD, D, and IQ built from the latest available summary statistics, we performed simple or multinomial logistic regression models adjusted for 10 principal components for the different clinical comparisons.
Results
In case–control comparisons PRS-SZ, PRS-BD and PRS-D distributed differentially across psychotic subcategories. In case–case comparisons, both PRS-SZ [odds ratio (OR) = 0.7, 95% confidence interval (CI) 0.54–0.92] and PRS-D (OR = 1.31, 95% CI 1.06–1.61) differentiated AP from SSD; and within AP categories, only PRS-SZ differentiated BD from psychotic depression (OR = 2.14, 95% CI 1.23–3.74).
Conclusions
Combining PRS for severe psychiatric disorders in prediction models for psychosis phenotypes can increase discriminative ability and improve our understanding of these phenotypes. Our results point towards the potential usefulness of PRSs in specific populations such as high-risk or early psychosis phases.
Perceived discrimination is associated with worse mental health. Few studies have assessed whether perceived discrimination (i) is associated with the risk of psychotic disorders and (ii) contributes to an increased risk among minority ethnic groups relative to the ethnic majority.
Methods
We used data from the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions Work Package 2, a population-based case−control study of incident psychotic disorders in 17 catchment sites across six countries. We calculated odds ratios (OR) and 95% confidence intervals (95% CI) for the associations between perceived discrimination and psychosis using mixed-effects logistic regression models. We used stratified and mediation analyses to explore differences for minority ethnic groups.
Results
Reporting any perceived experience of major discrimination (e.g. unfair treatment by police, not getting hired) was higher in cases than controls (41.8% v. 34.2%). Pervasive experiences of discrimination (≥3 types) were also higher in cases than controls (11.3% v. 5.5%). In fully adjusted models, the odds of psychosis were 1.20 (95% CI 0.91–1.59) for any discrimination and 1.79 (95% CI 1.19–1.59) for pervasive discrimination compared with no discrimination. In stratified analyses, the magnitude of association for pervasive experiences of discrimination appeared stronger for minority ethnic groups (OR = 1.73, 95% CI 1.12–2.68) than the ethnic majority (OR = 1.42, 95% CI 0.65–3.10). In exploratory mediation analysis, pervasive discrimination minimally explained excess risk among minority ethnic groups (5.1%).
Conclusions
Pervasive experiences of discrimination are associated with slightly increased odds of psychotic disorders and may minimally help explain excess risk for minority ethnic groups.
The ‘jumping to conclusions’ (JTC) bias is associated with both psychosis and general cognition but their relationship is unclear. In this study, we set out to clarify the relationship between the JTC bias, IQ, psychosis and polygenic liability to schizophrenia and IQ.
Methods
A total of 817 first episode psychosis patients and 1294 population-based controls completed assessments of general intelligence (IQ), and JTC, and provided blood or saliva samples from which we extracted DNA and computed polygenic risk scores for IQ and schizophrenia.
Results
The estimated proportion of the total effect of case/control differences on JTC mediated by IQ was 79%. Schizophrenia polygenic risk score was non-significantly associated with a higher number of beads drawn (B = 0.47, 95% CI −0.21 to 1.16, p = 0.17); whereas IQ PRS (B = 0.51, 95% CI 0.25–0.76, p < 0.001) significantly predicted the number of beads drawn, and was thus associated with reduced JTC bias. The JTC was more strongly associated with the higher level of psychotic-like experiences (PLEs) in controls, including after controlling for IQ (B = −1.7, 95% CI −2.8 to −0.5, p = 0.006), but did not relate to delusions in patients.
Conclusions
Our findings suggest that the JTC reasoning bias in psychosis might not be a specific cognitive deficit but rather a manifestation or consequence, of general cognitive impairment. Whereas, in the general population, the JTC bias is related to PLEs, independent of IQ. The work has the potential to inform interventions targeting cognitive biases in early psychosis.
Daily use of high-potency cannabis has been reported to carry a high risk for developing a psychotic disorder. However, the evidence is mixed on whether any pattern of cannabis use is associated with a particular symptomatology in first-episode psychosis (FEP) patients.
Method
We analysed data from 901 FEP patients and 1235 controls recruited across six countries, as part of the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EU-GEI) study. We used item response modelling to estimate two bifactor models, which included general and specific dimensions of psychotic symptoms in patients and psychotic experiences in controls. The associations between these dimensions and cannabis use were evaluated using linear mixed-effects models analyses.
Results
In patients, there was a linear relationship between the positive symptom dimension and the extent of lifetime exposure to cannabis, with daily users of high-potency cannabis having the highest score (B = 0.35; 95% CI 0.14–0.56). Moreover, negative symptoms were more common among patients who never used cannabis compared with those with any pattern of use (B = −0.22; 95% CI −0.37 to −0.07). In controls, psychotic experiences were associated with current use of cannabis but not with the extent of lifetime use. Neither patients nor controls presented differences in depressive dimension related to cannabis use.
Conclusions
Our findings provide the first large-scale evidence that FEP patients with a history of daily use of high-potency cannabis present with more positive and less negative symptoms, compared with those who never used cannabis or used low-potency types.