We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note we show that if 𝓛 is a commutative subspace lattice, then every trace-class operator in Alg 𝓛 lies in the norm-closure of the span of rank-one operators in Alg 𝓛. We also give an elementary proof of a recent result of Davidson and Pitts that if 𝓛 is a CSL generated by completely distributive lattice and finitely many commuting chains, then 𝓛 is compact in the strong operator topology if and only if 𝓛 is completely distributive.
An algebra of bounded operators on a Hilbert space H is said to be reductive if it is unital, weakly closed and has the property that if M ⊂ H is a (closed) subspace invariant for every operator in , then so is M⊥. Loginov and Šul'man [6] and Rosenthal [9] proved that if is an abelian reductive algebra which commutes with a compact operator K having a dense range, then is a von Neumann algebra. Note that in this case every invariant subspace of is spanned by one-dimensional invariant subspaces. Indeed, the operator KK* commutes with . Hence its eigenspaces are invariant for , so that H is an orthogonal sum of the finite-dimensional invariant subspaces of From this our claim easily follows.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.