We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By
Robert N. Schock, World Energy Council, UK and Center for Global Security Research,
Ralph Sims, Massey University,
Stan Bull, National Renewable Energy Laboratory,
Hans Larsen, Technical University,
Vladimir Likhachev, Russian Academy of Sciences,
Koji Nagano, Central Research Institute of Electric Power Industry,
Hans Nilsson, FourFact,
Seppo Vuori, VTT Technical Research Centre,
Kurt Yeager, Electric Power Research Institute and Galvin Electricity Initiative,
Li Zhou, Tsinghua University,
Xiliang Zhang, Tsinghua University,
John Weyant, Stanford University
A sustainable future depends on more efficient use of the Earth's abundant energy resources in order to meet the rapidly increasing demand for energy services as well as to provide broader access to everyone. In 2005 the overall efficiency of the energy system from primary energy to useful energy was only about 34%. Owing to diverse geographic inequities in both sources and people, supply cannot always meet the demand where needed. Energy pathways from source through conversion, transmission, storage, and distribution to end-users are complicated and presently consist of numerous discrete pathways that differ widely for each energy source and carrier. These include solid fuels, liquid fuels, gaseous fuels (including hydrogen), electricity and heat. Aging equipment, congested networks, and extreme demands complicate this picture in many countries of the Organisation for Economic Co-operation and Development (OECD). Development of new infrastructure in both non-OECD and OECD countries will lock-in future dependence on conventional or non-conventional energy sources. This chapter aims to assist decision-makers by providing up-todate knowledge on the full range of energy pathways, their management, and operation. Energy systems to achieve a sustainable future should be made much more flexible in order to deal with societal needs and the probable deployment of technologies not yet commercially available (such as smart appliances, electric vehicles, fuel cells, and carbon capture and storage). Technology and policy solutions are available for supporting more energy for sustainable development, but in order to meet the transition necessary to avoid unacceptable events such as social unrest and/or climate change driven temperature rise, they should be put in place rapidly, and done in concert with each other.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.