We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The projection body of order one ${{\Pi }_{1}}K$ of a convex body $K$ in ${{\mathbb{R}}^{n}}$ is the body whose support function is, up to a constant, the average mean width of the orthogonal projections of $K$ onto hyperplanes through the origin.
The paper contains an inequality for the support function of ${{\Pi }_{1}}K$, which implies in particular that such a function is strictly convex, unless $K$ has dimension one or two. Furthermore, an existence problem related to the reconstruction of a convex body is discussed to highlight the different behavior of the area measures of order one and of order $n\,-\,1$.
The classical Minkowski sum of convex sets is defined by the sum of the corresponding support functions. The Lp-extension of such a definition makes use of the sum of the pth power of the support functions. An Lp-zonotope Zp is the p-sum of finitely many segments and is isometric to the unit ball of a subspace of ℓq, where 1/p + 1/q = 1. In this paper, a sharp upper estimate is given of the volume of Zp in terms of the volume of Z1, as well as a sharp lower estimate of the volume of the polar of Zp in terms of the same quantity. In particular, for p = 1, the latter result provides a new approach to Reisner's inequality for the Mahler conjecture in the class of zonoids.
The volume of the Lp-centroid body of a convex body K ⊂ ℝd is a convex function of a time-like parameter when each chord of K parallel to a fixed direction moves with constant speed. This fact is used to study extrema of some affine invariant functionals involving the volume of the Lp-centroid body and related to classical open problems like the slicing problem. Some variants of the Lp-Busemann-Petty centroid inequality are established. The reverse form of these inequalities is proved in the two-dimensional case.
The paper shows that no origin-symmetric convex polyhedron in R3 is the intersection body of a star body. It is shown also that every originsymmetric convex body in Rd, for d = 3 and 4, can be seen as the intersection body of a star-shaped set whose radial function satisfies conditions related to suitable non-integer Sobolev classes.
The paper deals with the problem of estimating the distance, in radial or Hausdorff metrics, between two centred star bodies of Rd, d≤3, in terms of the distance between the corresponding intersection bodies.
The problem is the reconstruction of the shape of an object, whose shell is a surface star-shaped with respect to a point 0, from the knowledge of the volume of every “half-object” obtained by taking any plane through 0. Conditions for the existence and uniqueness of the solution are given. The main result consists in showing that any uniform a-priori bound on the mean curvature of the shell reestablishes continuous dependence on the data for bodies satisfying a certain symmetry condition.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.