We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
The field of nanomedicine is quickly evolving in response to achievements in genomics, proteomics, molecular biology, bioengineering, and the imaging sciences. New approaches to entrenched medical problems are being studied using a cadre of “nanotools”, one example of which is perfluorocarbon nanoparticles.Perfluorocarbon nanoparticles represent a platform technology with nominal sizes around 250nm, which can be modified to home to thrombi and the neovasculature in vivo after intravenous injection. They can be noninvasively imaged with ultrasound, magnetic resonance (MR, 1H and 19F), or SPECT/CT. In rabbit models, perfluorocarbon nanoparticles have been demonstrated to deliver drug payloads targeted to vascular tissues for anti-angiogenic and anti-restenotic applications and to noninvasively confirm and quantify delivery as well as to follow response to treatment. In canine studies these agents have been demonstrated to target and enhance the MR and ultrasound contrast of intravascular thrombi, and using ex vivo human carotid endarterectomy sections, these results have been extrapolated to human disease where the potential for sensitive detection of microthrombi in the fissures of ruptured plaques is clearly demonstrated. The development of emerging nanotechnology platforms, such as the perfluorocarbon nanoparticles, permits translation of immunohistology techniques from fixed tissue on a slide to live tissue in an animal. These new agents allow biochemical and physiological changes to be studied dynamically in vivo and permit the quest for site-directed therapy to be realized.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.