We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cardiovascular diseases (CVDs) are the leading cause of deaths globally. Mortality and incidence of CVDs are significantly higher in people with mood disorders. About 81.1% of CVD patients were reported with comorbidities in 2019, where the second most common comorbidity was due to major depressive disorder (MDD). This study, therefore, aimed to evaluate the genetic correlation between CVDs and mood disorders by using data from the UK Biobank towards understanding the influence of genetic factors on the comorbidity due to CVDs and mood disorders.
Methods
The UK Biobank database provides genetic and health information from half a million adults, aged 40–69 years, recruited between 2006 and 2010. A total of 117,925 participants and 6,128,294 variants were included for analysis after applying exclusion criteria and quality control steps. This study focused on two CVD phenotypes, two mood disorders and 12 cardiometabolic-related traits to conduct association studies.
Results
The results indicated a significant positive genetic correlation between CVDs and overall mood disorders and MDD specifically, showing substantial genetic overlap. Genetic correlation between CVDs and bipolar disorder was not significant. Furthermore, significant genetic correlation between mood disorders and cardiometabolic traits was also reported.
Conclusions
The results of this study can be used to understand that CVDs and mood disorders share a great deal of genetic liability in individuals of European ancestry.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.