We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Pyruvate kinase activity was studied in kidney extracts of mice from various sources. One C57BL/6J female among several hundred examined expressed activity approximately one half of the normal level. This animal transmitted the trait, and a single gene responsible for the activity difference was identified and mapped to chromosome 9. Linkage with Mod-1 and dilute was established. A spontaneous mutation in the C57BL/6J strain apparently was responsible for the variant pyruvate kinase.
Metal induced growth (MIG) was used to form epitaxial thin films of microcrystalline Si (μc-Si). By substituting Al as the catalyst metal in place of the usual Ni, x-ray diffraction (XRD) confirmed that μc-Si was successfully grown at temperatures between 350-525°C. At 525°C, a preferred orientation of (220) Si was observed with additional (111) and (311) Si orientations, while a temperature of 350°C resulted in a shift in preferred orientation to (111) Si. The lower limit for Al thickness was found to be between 10-20 nm with little crystallization and a smooth surface observed at 10 nm with XRD and SEM, respectively. Electrical measurements on Schottky diodes revealed space-charge limited conduction (SCLC) with an exponential distribution of trap levels due to diffusion of Al atoms into the Si, which was supported by analysis with energy dispersive x-ray spectroscopy (EDX) near the film surface. By depositing a thin layer of Co on top of Al prior to sputtering, the films exhibited increased crystallinity and a more uniform surface likely due to increased confinement of Al atoms. Electrical measurements demonstrated a shift from SCLC to thermionic emission in resulting Schottky diodes.
A metal-induced growth (MIG) process was employed to deposit thin films of microcrystalline silicon (μc-Si) for solar cell applications. Due to different grain orientations of the crystals, the absorption coefficient of μc-Si is about 10 times higher than the absorption coefficient of single crystalline Si. The properties of the Si film were investigated resulting from variations in several parameters. A range of Ni and Co thicknesses were examined from 7.5 nm to 60 nm including combinations of the two, while the dc sputtering power was stepped up from 150 W to 225 W. The structure of the resulting film was studied using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). SEM of the film revealed that 5 hr of Si deposition at 150 W yields a film thickness of 6.5 μm and a maximum grain size of about 0.6 μm. EDS data showed that at the middle of the Si film the atomic percentage of the Si was 99.17%. XRD data showed that the dominant crystal orientation is {220}. To characterize the photovoltaic properties of the μc-Si, Schottky photodiodes were fabricated. Ni alone as the seed layer resulted in ohmic behavior. With Co only, MIG formed a rectifying contact with open-circuit voltage (V∝). The combination of Co layered over Ni formed better thin films and gave a Voc of 0.24 V and short-circuit current density (Jsc) of 5.0 mA/cm2 since the Co prevents Ni contamination of the top of the grown Si layer.
The yrdC family of genes codes for proteins that occur both independently and as a domain in proteins that have been implicated in regulation. An example for the latter case is the sua5 gene from yeast. Sua5 was identified as a suppressor of a translation initiation defect in cytochrome c and is required for normal growth in yeast (Na JG, Pinto I, Hampsey M, 1992, Genetics 11:791–801). However, the function of the Sua5 protein remains unknown; Sua5 could act either at the transcriptional or the posttranscriptional levels to compensate for an aberrant translation start codon in the cyc gene. To potentially learn more about the function of YrdC and proteins featuring this domain, the crystal structure of the YrdC protein from Escherichia coli was determined at a resolution of 2.0 Å. YrdC adopts a new fold with no obvious similarity to those of other proteins with known three-dimensional (3D) structure. The protein features a large concave surface on one side that exhibits a positive electrostatic potential. The dimensions of this depression, its curvature, and the fact that conserved basic amino acids are located at its floor suggest that YrdC may be a nucleic acid binding protein. An investigation of YrdC's binding affinities for single- and double-stranded RNA and DNA fragments as well as tRNAs demonstrates that YrdC binds preferentially to double-stranded RNA. Our work provides evidence that 3D structures of functionally uncharacterized gene products with unique sequences can yield novel folds and functional insights.
The human fibrinogen γ-chain C-terminal segment functions as the platelet integrin binding site as well as the Factor XIIIa cross-linking substrate and thus plays an important role in blood clot formation and stabilization. The three-dimensional structure of this segment has been determined using carrier protein driven crystallization. The C-terminal segment, γ-(398–411), was attached to a linker sequence at the C-terminus of glutathione S-transferase and the structure of this fusion protein determined at 1.8 Å resolution. Functional studies of the chimeric protein demonstrate that the fibrinogen sequence in the presence of the carrier protein retains its specific functions as ligand for platelet integrin αIIb β3 (gpIIb/IIIa) and as a cross-linking substrate for Factor XIIIa. The structure obtained for the fibrinogen γ-chain segment is not affected by crystal packing and can provide the missing links to the recently reported model of cross-linked fibrin.
Email your librarian or administrator to recommend adding this to your organisation's collection.