We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Our knowledge and understanding of the structure and function of complex host-associated communities has grown exponentially in the last decade through improvements in sequencing technologies. Despite this, there are still many outstanding research questions, which will undoubtably lead to many more. Concerted effort is required to elucidate the composition and function of taxonomic groups other than bacteria that constitute host microbiomes, and to extend our current cataloguing efforts to non-model and field-based host organisms. Further to this, we need to continue to move beyond the 'who?' question provided by relatively cheap amplicon sequencing to gain a better understanding of 'what?' the microbiome is doing, using metatranscriptomics approaches. Critically, we need to understand how members of the microbiome interact to confer function. Given the current unprecedented environmental change, microbiome plasticity may prove vital to host resilience and fitness. Furthermore, there is considerable potential for microbial biotechnology to improve numerous aspects of humanity, although care must be taken to ensure environmental and social justice prevail.
Two major outstanding questions in microbiome research ask what microbes are present in a community and how they interact with each other and their hosts. Recent, rapid improvements in nucleic acid (DNA and RNA) sequencing allow us to study the composition and function of microbiomes in unprecedented detail, leading to a step change in our understanding of host–microbe interactions. This chapter gives a broad overview of the basic toolkit available to modern microbiologists and microbial ecologists, exploring their application to key questions about microbiome structure and function. We cover tools based on nucleic acid sequencing (e.g. amplicon sequencing, metagenomics, metatranscriptomics) as well as approaches targeting larger molecules such as metabolomics and proteomics. We discuss the use of microbial culture as a means of measuring functional capacity of individual microbes, or building artificial communities to understand emergent properties of consortia. We emphasise the advantages of combining multiple techniques alongside robust experimental design to garner powerful quantitative estimates of microbiome structure, and how this relates to host–microbe interactions.
A classic example of microbiome function is its role in nutrient assimilation in both plants and animals, but other less obvious roles are becoming more apparent, particularly in terms of driving infectious and non-infectious disease outcomes and influencing host behaviour. However, numerous biotic and abiotic factors influence the composition of these communities, and host microbiomes can be susceptible to environmental change. How microbial communities will be altered by, and mitigate, the rapid environmental change we can expect in the next few decades remain to be seen. That said, given the enormous range of functional diversity conferred by microbes, there is currently something of a revolution in microbial bioengineering and biotechnology in order to address real-world problems including human and wildlife disease and crop and biofuel production. All of these concepts are explored in further detail throughout the book.
Through a long history of co-evolution, multicellular organisms form a complex of host cells plus many associated microorganism species. Consisting of algae, bacteria, archaea, fungi, protists and viruses, and collectively referred to as the microbiome, these microorganisms contribute to a range of important functions in their hosts, from nutrition, to behaviour and disease susceptibility. In this book, a diverse and international group of active researchers outline how multicellular organisms have become reliant on their microbiomes to function, and explore this vital interdependence across the breadth of soil, plant, animal and human hosts. They draw parallels and contrasts across hosts in different environments, and discuss how this invisible microbial ecosystem influences everything from the food we eat, to our health, to the correct functioning of ecosystems we depend on. This insightful read also pertinently encourages students and researchers in microbial ecology, ecology, and microbiology to consider how this interdependence may be key to mitigating environmental changes and developing microbial biotechnology to improve life on Earth.
Fractional anisotropy in the uncinate fasciculus and the cingulum may be biomarkers for bipolar disorder and may even be distinctly affected in different subtypes of bipolar disorder, an area in need of further research.
Aims
This study aims to establish if fractional anisotropy in the uncinate fasciculus and cingulum shows differences between healthy controls, patients with bipolar disorder type I (BD-I) and type II (BD-II), and their unaffected siblings.
Method
Fractional anisotropy measures from the uncinate fasciculus, cingulum body and parahippocampal cingulum were compared with tractography methods in 40 healthy controls, 32 patients with BD-I, 34 patients with BD-II, 17 siblings of patients with BD-I and 14 siblings of patients with BD-II.
Results
The main effects were found in both the right and left uncinate fasciculus, with patients with BD-I showing significantly lower fractional anisotropy than both patients with BD-II and healthy controls. Participants with BD-II did not differ from healthy controls. Siblings showed similar effects in the left uncinate fasciculus. In a subsequent complementary analysis, we investigated the association between fractional anisotropy in the uncinate fasciculus and polygenic risk for bipolar disorder and psychosis in a large cohort (n = 570) of healthy participants. However, we found no significant association.
Conclusions
Fractional anisotropy in the uncinate fasciculus differs significantly between patients with BD-I and patients with BD-II and healthy controls. This supports the hypothesis of differences in the physiological sub-tract between bipolar disorder subtypes. Similar results were found in unaffected siblings, suggesting the potential for this biomarker to represent an endophenotype for BD-I. However, fractional anisotropy in the uncinate fasciculus seems unrelated to polygenic risk for bipolar disorder or psychosis.
Declaration of interest
None.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.