We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book contains the proceedings of the summer school “Optimal transportation: Theory and Applications” held at the Fourier Institute (University of Grenoble I, France). The first 2 weeks were devoted to courses that described the main properties of optimal transportation and discussed its applications to analysis, differential geometry, dynamical systems, partial differential equations and probability theory. Courses were addressed both to students and researchers. A workshop took place during the last week. The aim of this conference was to present very recent developments of optimal transportation and also its applications in biology, mathematical physics, game theory and financial mathematics.
The first part of the book contains (expanded) versions of the courses. There are two sets of notes by F. Santambrogio. The first one gives a short introduction to optimal transport theory. In particular, the Kantorovich duality, the structure of Wasserstein spaces and the Monge–Ampère equations related to optimal transport are presented to the readers. These notes could be seen as an introduction for the other papers of the book. The second one describes applications to economics, game theory and urban planning.
The notes of I. Gentil, P. Topping and S.-I. Ohta describe (with different flavours) the connections between optimal transport and the notion of Ricci curvature, which is a very important tool in classical Riemannian geometry. A notion of curvature-dimension condition was defined by D. Bakry and M. Émery to study geometric properties of diffusions and to get functional inequalities.
The theory of optimal transportation has its origins in the eighteenth century when the problem of transporting resources at a minimal cost was first formalised. Through subsequent developments, particularly in recent decades, it has become a powerful modern theory. This book contains the proceedings of the summer school 'Optimal Transportation: Theory and Applications' held at the Fourier Institute in Grenoble. The event brought together mathematicians from pure and applied mathematics, astrophysics, economics and computer science. Part I of this book is devoted to introductory lecture notes accessible to graduate students, while Part II contains research papers. Together, they represent a valuable resource on both fundamental and advanced aspects of optimal transportation, its applications, and its interactions with analysis, geometry, PDE and probability, urban planning and economics. Topics covered include Ricci flow, the Euler equations, functional inequalities, curvature-dimension conditions, and traffic congestion.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.