We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
More than 20000 observations of Near Earth asteroids and comets are collected and reduced in Pulkovo Observatory during last 10 years. For observations of these objects two robotic telescopes are used – ZA-320M (Cassegrain system, D = 320 mm, F = 3200 mm) at Pulkovo and MTM-500M (Maksutov – Cassegrain system, D = 500 mm, F = 4100 mm) at Kislovodsk mountain station. These telescopes perform CCD observations of objects up to 18.0 and 20.5 magnitude, correspondingly. The results of observations are regularly submitted to Minor Planet Center.
There are two mathematical models of elastic walls of healthy and atherosclerotic bloodvessels developed and studied. The models are included in a numerical model of globalblood circulation via recovery of the vessel wall state equation. The joint model allowsus to study the impact of arteries atherosclerotic disease of a set of arteries onregional haemodynamics.
We present the fiber-spring elastic model of the arterial wall with atheroscleroticplaque composed of a lipid pool and a fibrous cap. This model allows us to reproducepressure to cross-sectional area relationship along the diseased vessel which is used inthe network model of global blood circulation. Atherosclerosis attacks a region ofsystemic arterial network. Our approach allows us to examine the impact of the diseasedregion onto global haemodynamics.
Single-crystal ingots of CdTe and Cd0,96Zn0.04Te 60–100 mm in diameter were grown by directional solidification using the self-seeding technique. The microstructure of the crystals was checked by optical microscopy, electron microscopy (TEM, SEM and EBIC), cathodoluminescence, and X-ray diffraction. It was found that crystal perfection depends to a large measure on the temperature schedule during Lpostgrowth crystal cooling: special caution should be exercised in the temperature interval including the polymorphous transformation. A direct relationship between optical and electronic properties on the one hand and crystal microstructure on the other hand was established.
Experimental investigation of thermoelectric properties of nanowires with diameter of about 5 nm was carried out. Chrysotile asbestos (a natural mineral) was used for a sample preparation. Its nano-sized channels were filled under pressure by melted InSb or Te. The measurements showed that temperature dependences of electrical resistance and thermopower of produced quantum wires differ considerably from corresponding dependences of bulk materials. It is possible to conclude that the results obtained are better described by Lattinger liquid model than by usual Fermi gas one.
A hybrid double heterostructure with large asymmetric band offsets, combining AlAsSb/InAs (as a III–V part) and CdMgSe/CdSe (as a II–VI part), has been proposed as a basic element of a mid-infrared laser structure design. The p-i-n diode structure has been successfully grown by molecular beam epitaxy (MBE) and exhibited an intense long-wavelength electroluminescence at 3.12 μm (300K). A II–VI MBE growth initiation with a thin ZnTe buffer layer prior to the CdMgSe deposition results in a dramatic reduction of defect density originating at the II–VI/III–V interface, as demonstrated by transmission electron microscopy. A less than 10 times reduction of electroluminescence intensity from 77 to 300K indicates an efficient carrier confinement in the InAs active layer due to high potential barriers in conduction and valence bands, estimated as ΔEC = 1.28 eV and ΔEV ∼ 1.6 eV. An increase in the pumping current results in a super-linear raising the EL intensity. The type of band line up at the coherent InAs/Cd1−xMgxSe interface is discussed for 0≤x≤0.2, using experimental data and theoretical estimations within a model-solid theory.
It is well known that the temperature dependence of Seebeck coefficient of β-iron disilicide has unusual shape that cannot be described by an ordinary theory. A theory describing such a shape is suggested. It is shown this shape can be explained by optical phonon drag effect. Very high value of ZT could be achieved in some material on the base of this effect.
This work is devoted to numerical experiments for multidimensional Spectral Inverse Problems. We check the efficiency of the algorithm based on the BC-method, which exploits relations between Boundary Control Theory and Inverse Problems. As a test, the problem for an ellipse is considered. This case is of interest due to the fact that a field of normal geodesics loses regularity on a nontrivial separation set. The main result is that the BC-algorithm works quite successfully in spite of this complication. A theoretical introduction to the BC-method is included.
A comparative analysis of different Cd1−xZnxTe (CZT) crystals grown by a vertical high pressure Bridgman (VHPB) method is reported. The results of several analytical techniques, such as triple axis x-ray diffraction (TAD), rocking curves, low temperature photoluminescence (PL), scanning electron microscopy (SEM), and proton induced x-ray emission (PIXE) are discussed. Segregated carbon inclusions were identified by SEM and energy dispersive x-ray fluorescence (EDXRF), and the results are interpreted in terms of constitutional supercooling of the solidifying CZT melt. The carbon inclusions significantly decrease the resistivity, and in some cases, the noise is too large for the fabrication of radiation detectors. Combining these results with other measurements reported by our research team [1], we identify correlations between the growth and the defects identified in these CZT crystals.
Several analytical techniques have been used in the study of the homogeneity of Cadmium Zinc Telluride (CZT) single crystals grown by the vertical high pressure Bridgman (VHPB) method. The presence of black inclusions and tubular hollow pipes has been observed by a few methods, such as photoluminescence (PL), infrared (IR) transmission microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The crystals investigated were grown commercially in the USA, at the Institute of Single Crystals in Kharkov, Ukraine, and at the Institute of Solid State Physics, Moscow, Russia. We discuss the homogeneity of the various CZT crystals based on the results from these measurement techniques.
Using X-ray structural and transmission electron microscopy analyses, specific features of the phase and structure transformations in armco-iron and steel 45 affected by a high-current electron beam up to 1011 W/cm2 power density have been studied. It was revealed that hardening of steel with martensite structure has a quasi-periodic character that is caused by the action of a shock wave. The action of a shock wave results in formation of a thin layer on the rear side of the samples. The layer is composed of subgrains of ot-ferrite of a regular hexagonal shape with thin layers of graphite on their boundaries.
Using X-ray structural analysis and transmission electron microscopy of thin layers we have studied the mechanism of heat-affected zone formation in as-hardened steel irradiated by a low-energy microsecond high-current electron beam. It has been found that the above zone consists of three characteristic layers. We have analysed the conditions of formation of this layers using thermal calculations.