Let
$\to $ be a continuous
$\protect \operatorname {\mathrm {[0,1]}}$-valued function defined on the unit square
$\protect \operatorname {\mathrm {[0,1]}}^2$, having the following properties: (i)
$x\to (y\to z)= y\to (x\to z)$ and (ii)
$x\to y=1 $ iff
$x\leq y$. Let
$\neg x=x\to 0$. Then the algebra
$W=(\protect \operatorname {\mathrm {[0,1]}},1,\neg ,\to )$ satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus. Let
$x\to _{\text {\tiny \L }}y=\min (1,1-x+y)$ and
$\neg _{\text {\tiny \L }}x=x\to _{\text {\tiny \L }} 0 =1-x.$ Then there is precisely one isomorphism
$\phi $ of W onto the standard Wajsberg algebra
$W_{\text {\tiny \L }}= (\protect \operatorname {\mathrm {[0,1]}},1,\neg _{\text {\tiny \L }},\to _{\text {\tiny \L }})$. Thus
$x\to y= \phi ^{-1}(\min (1,1-\phi (x)+\phi (y)))$.