A Banach space
has the complete continuity property (CCP) if each bounded linear operator from L 1 into
is completely continuous (i.e., maps weakly convergent sequences to norm convergent sequences). The main theorem shows that a Banach space failing the CCP has a subspace with a finite dimensional decomposition which fails the CCP. If furthermore the space has some nice local structure (such as fails cotype or is a lattice), then the decomposition may be strengthened to a basis.