To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter explores the fundamentals of data in data science, covering data types (structured vs. unstructured), collection sources (open data, social media APIs, multimodal data, synthetic data), and storage formats (CSV, TSV, XML, RSS, JSON). It emphasizes the critical importance of data pre-processing, including data cleaning (handling missing values, smoothing noisy data, data munging), integration, transformation, reduction, and discretization. Through hands-on examples, the chapter demonstrates how to systematically prepare "dirty" real-world data for analysis by addressing inconsistencies, outliers, and missing information. The chapter highlights that data preparation is often half the battle in data science, requiring both technical skills and careful attention to data quality and bias.
This chapter explores the fundamentals of data in data science, covering data types (structured vs. unstructured), collection sources (open data, social media APIs, multimodal data, synthetic data), and storage formats (CSV, TSV, XML, RSS, JSON). It emphasizes the critical importance of data pre-processing, including data cleaning (handling missing values, smoothing noisy data, data munging), integration, transformation, reduction, and discretization. Through hands-on examples, the chapter demonstrates how to systematically prepare "dirty" real-world data for analysis by addressing inconsistencies, outliers, and missing information. The chapter highlights that data preparation is often half the battle in data science, requiring both technical skills and careful attention to data quality and bias.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.