Recently, there have been discussions about the shape of the heliopause. Some scientists question the classical form, which is close to a paraboloid. They suggest that the heliopause may have a two-jet collimated shape. While we disagree with this view of the heliopause shape, it seems likely that for stars with stronger stellar magnetic fields and those that are at rest or moving slowly through the interstellar medium, the astropause will have a two-jet collimated shape.
This paper raises the question of the stability of the two-jet collimated astrosphere. Recent studies have noted the emergence of instability in the heliosheath near the axis of the heliospheric jets, linking this to the action of neutral hydrogen atoms. We note in this paper that astrospheric jets can become unstable in the presence of strong magnetic fields, even without the influence of atoms, which is unexpected. Furthermore, due to a feedback mechanism, astrospheric jets undergo self-oscillation.
We investigated the development of this instability, the nature of the feedback mechanism, and the period of self-oscillation for different system parameters. Our findings provide valuable insights into the behaviour of these unique plasma structures, and they are another step towards studying the stability of two-jet collimated astrospheres.