To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This introductory chapter defines data science as a field focused on collecting, storing, and processing data to derive meaningful insights for decision-making. It explores data science applications across diverse sectors including finance, healthcare, politics, public policy, urban planning, education, and libraries. The chapter examines how data science relates to statistics, computer science, engineering, business analytics, and information science, while introducing computational thinking as a fundamental skill. It discusses the explosive growth of data (the 3Vs: velocity, volume, variety) and essential skills for data scientists, including statistical knowledge, programming abilities, and data literacy. The chapter concludes by addressing critical ethical concerns around privacy, bias, and fairness in data science practice.
This introductory chapter defines data science as a field focused on collecting, storing, and processing data to derive meaningful insights for decision-making. It explores data science applications across diverse sectors including finance, healthcare, politics, public policy, urban planning, education, and libraries. The chapter examines how data science relates to statistics, computer science, engineering, business analytics, and information science, while introducing computational thinking as a fundamental skill. It discusses the explosive growth of data (the 3Vs: velocity, volume, variety) and essential skills for data scientists, including statistical knowledge, programming abilities, and data literacy. The chapter concludes by addressing critical ethical concerns around privacy, bias, and fairness in data science practice.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.