The optical emission spectra of the plasma generated by a 1.06-μm Nd:YAG laser irradiation of Al target in air was recorded and analyzed in a spatially resolved manner. Electron temperatures and densities in the plasma were obtained using the relative emission intensities and the Stark-broadened linewidths of Al(I) emission lines, respectively. The dependence of the electron density and temperature on the distance from the target surface and on the laser irradiance were manifested. We also discussed how the air takes part in the plasma evolution process and confirmed that the ignition of the air plasma was by the collisions between the energetic electrons and the nitrogen atoms through a cascade avalanche process.