The Neoproterozoic, epidote-bearing Mons Claudianus Batholith (MCB), Egypt, consists of tonalite-trondhjemite-granodiorite (TTG) lithologies, containing variable contents of quartz, feldspars, amphiboles, biotite, and magmatic epidote, with accessory titanite, zircon, allanite, apatite,opaque magnetite and ilmenite. Plagioclase varies from An49 to An19, and K-feldspars possess near end-member compositions (Or97 to Or91). Amphiboles are calcic (Ca = 1.88–1.92 atoms per formula unit (apfu)), Al-rich (average AlT= 1.84 apfu), having an average Fe/(Fe + Mg) ratio of 0.50, and are edenite, ferro-edenite and ferropargasite. The Al-in-Hb barometer produced an average crystallization pressure of 5.5 kbar, consistent with the presence of magmatic epidote; the association epidote – Al-rich-Hb suggestsmesozonal crustal levels, and thus a possible average rate of regional uplift for the Nubian Shield would have been in the order of 0.03 mm/yr. Calculated temperatures (using the Hb-Plag geothermometer) range from 729 to 754°C (average 747°C). The calculated P / T valuesof epidote-bearing MCB rocks fall within the experimentally-determined P-T range of stability of magmatic epidote with f O2 buffered from NNO to HM. Biotites in the MCB are moderately Mg-rich (Fe/(Fe + Mg) = 0.42 to 0.50), and are type 'C'-biotite, typical ofcalcalkaline orogenic suites, which are distinct from types 'A' and 'P' biotites occurring in anorogenic alkaline, and peraluminous lithologies, respectively. The minor secondary chlorite phases, with their Fe/(Fe + Mg) ratios of 0.37–0.52, are pycnochlorite and ripidolites, and belongto group 'c' chlorites. Minerals of the MCB reflect a petrogenetic history involving a wet, subsolvus, typically orogenic magmatic system. Results of this study could have wide implications for mineralogical characterization, level of emplacement and evolution of magmatic systems of TTG suitesoccurring in other orogenic belts.