This article presents a numerical and theoretical study of the generation and propagation of oscillation in the semiclassical limit ħ → 0 of the nonlinear paraxial equation. In a general setting of both dimension and nonlinearity, the essential differences between the “defocusing” and “focusing” cases are observed. Numerical comparisons of the oscillations are made between the linear (“free”) and the cubic (defocusing and focusing) cases in one dimension. The integrability of the one-dimensional cubic nonlinear paraxial equation is exploited to give a complete global characterization of the weak limits of the oscillations in the defocusing case.