To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An important operation in signal processing and machine learning is dimensionality reduction. There are many such methods, but the starting point is usually linear methods that map data to a lower-dimensional set called a subspace. When working with matrices, the notion of dimension is quantified by rank. This chapter reviews subspaces, span, dimension, rank, and nullspace. These linear algebra concepts are crucial to thoroughly understanding the SVD, a primary tool for the rest of the book (and beyond). The chapter concludes with a machine learning application, signal classification by nearest subspace, that builds on all the concepts of the chapter.
Chapter 8: Many problems in applied mathematics involve finding a minimum-norm solution or a best approximation, subject to certain constraints. Orthogonal subspaces arise frequently in solving such problems. Among the topics we discuss in this chapter are the minimum-norm solution to a consistent linear system, a least-squares solution to an inconsistent linear system, and orthogonal projections.
We consider the existence of closest points in convex subsets of Hilbert sapces. In particular this enables us to define the orthogonal projection onto a closed linear subspace U of a Hilbert space H, and thereby decompose any element x of H as x=u+v, where u is an element of U and v is contained in its orthogonal complement. We also discuss ‘best approximations’ of elements of H in spaces spanned by collections of elements of H.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.