Human symmetry detection in dense patterns exhibits a spatial integration range that becomes narrower with distance of the symmetry axis from the fovea. This narrowing violates the general properties of eccentricity that have been found for all previous visual cortical areas, tasks, and assessment techniques. This reverse eccentricity scaling may, in conjunction with the long-range matching properties for symmetry described in Tyler and Hardage (1996), imply that symmetry is processed by a specialized cortical area with non-retinotopic neural architecture.