This chapter focuses on data collection methods, analysis approaches, and evaluation techniques in data science. It covers various data collection methods including surveys (with different question types like multiple-choice, Likert scales, and open-ended questions), interviews, focus groups, diary studies, and user studies in lab and field settings.
The chapter distinguishes between quantitative methods (using numerical measurements and statistical analysis) and qualitative methods (observing behaviors, attitudes, and opinions through techniques like grounded theory and constant comparison). It also discusses mixed-method approaches that combine both methodologies.
For evaluation, the chapter explains model comparison metrics including precision, recall, F-measure, ROC curves, AIC, and BIC. It covers validation techniques like training-testing splits, A/B testing, and cross-validation methods. The chapter emphasizes that data science involves pre-data collection planning and post-analysis evaluation, not just data processing.