Let   $X$  be a real normed space,
 $X$  be a real normed space,   $Y$  a Banach space, and
 $Y$  a Banach space, and   $f\,:\,X\,\to \,Y$ . We prove theUlam–Hyers stability theorem for the cubic functional equation
 $f\,:\,X\,\to \,Y$ . We prove theUlam–Hyers stability theorem for the cubic functional equation
   $$f\left( 2x\,+\,y \right)\,+\,f\left( 2x\,-\,y \right)\,-\,2f\left( x\,+\,y \right)\,-\,2f\left( x\,-\,y \right)\,-\,12f\left( x \right)\,=\,0$$
 $$f\left( 2x\,+\,y \right)\,+\,f\left( 2x\,-\,y \right)\,-\,2f\left( x\,+\,y \right)\,-\,2f\left( x\,-\,y \right)\,-\,12f\left( x \right)\,=\,0$$  
in restricted domains. As an application we consider a measure zero stability problem of the inequality
   $$\left\| f\left( 2x\,+\,y \right)\,+\,f\left( 2x\,-\,y \right)\,-\,2f\left( x\,+\,y \right)\,-\,2f\left( x\,-\,y \right)\,-\,12f\left( x \right) \right\|\,\le \,\varepsilon$$
 $$\left\| f\left( 2x\,+\,y \right)\,+\,f\left( 2x\,-\,y \right)\,-\,2f\left( x\,+\,y \right)\,-\,2f\left( x\,-\,y \right)\,-\,12f\left( x \right) \right\|\,\le \,\varepsilon$$  
for all   $\left( x,\,y \right)$  in
 $\left( x,\,y \right)$  in   $\Gamma \,\subset \,{{\mathbb{R}}^{2}}$  of Lebesgue measure 0.
 $\Gamma \,\subset \,{{\mathbb{R}}^{2}}$  of Lebesgue measure 0.