Model-based recursive partitioning (MOB) and its extension, metaMOB, are tools for identifying subgroups with differential treatment effects. When pooling data from various trials the metaMOB approach uses random effects to model the heterogeneity of treatment effects. In situations where interventions offer only small overall benefits and require extensive, costly trials with a large participant enrollment, leveraging individual-participant data (IPD) from multiple trials can help identify individuals who are most likely to benefit from the intervention. We explore the application of MOB and metaMOB in the context of non-specific low back pain treatment, using synthetic data based on a subset of the individual participant data meta-analysis by Patel et al.1 Our study underscores the need to explore heterogeneity in intercepts and treatment effects to identify subgroups with differential treatment effects in IPD meta-analyses.