We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Understanding the relative costs and effectiveness of all competing interventions is crucial to informing health resource allocations. However, to receive regulatory approval for efficacy, novel pharmaceuticals are typically only compared against placebo or standard of care. The relative efficacy against the best alternative intervention relies on indirect comparisons of different interventions. When treatment effect modifiers are distributed differently across trials, population adjustment is necessary to ensure a fair comparison. Matching-Adjusted Indirect Comparisons (MAIC) is the most widely adopted weighting-based method for this purpose. Nevertheless, MAIC can exhibit instability under poor population overlap. Regression-based approaches to overcome this issue are heavily dependent on parametric assumptions.
Methods
We introduce a novel method, ‘G-MAIC,’ which combines outcome regression and weighting-adjustment to address these limitations. Inspired by Bayesian survey inference, G-MAIC employs Bayesian bootstrap to propagate the uncertainty of population-adjusted estimates. We evaluate the performance of G-MAIC against standard non-adjusted methods, MAIC and Parametric G-computation, in a simulation study encompassing 18 scenarios with varying trial sample sizes, population overlaps, and covariate structures.
Results
Under poor overlap and small sample sizes, MAIC can produce non-sensible variance estimations or increased bias compared to non-adjusted methods, depending on covariate structures in the two trials compared. G-MAIC mitigates this issue, achieving comparable performance to parametric G-computation with reduced reliance on parametric assumptions.
Conclusion
G-MAIC presents a robust alternative to the widely adopted MAIC for population-adjusted indirect comparisons. The underlying framework is flexible such that it can accommodate advanced nonparametric outcome models and alternative weighting schemes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.