To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The chapter introduces key codesign principles across multiple layers of the design stack highlighting the need for cross-layer optimizations. Mitigation of various non-idealities stemming from emerging devices such as device-to-device variations, cycle-to-cycle variations, conductance drift, and stuck-at-faults through algorithm–hardware codesign are discussed. Further, inspiration from the brain’s self-repair mechanism is utilized to design neuromorphic systems capable of autonomous self-repair. Finally, an end-to-end codesign approach is outlined by exploring synergies of event-driven hardware and algorithms with event-driven sensors, thereby leveraging maximal benefits of brain-inspired computing.
The chapter focuses on the network and architecture layers of the design stack building up from device and circuit concepts introduced in Chapters 3 and 4. Architectural advantages like address-event representation stemming from neuromorphic models by leveraging spiking sparsity are discussed. Near-memory and in-memory architectures using CMOS implementations are first discussed followed by several emerging technologies, namely, correlated electron semiconductor-based devices, filamentary devices, organic devices, spintronic devices, and photonic neural networks.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.