To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a connected Lie group G and an automorphism T of G, we consider the action of T on Sub$_G$, the compact space of closed subgroups of G endowed with the Chabauty topology. We study the action of T on Sub$^p_G$, the closure in Sub$_G$ of the set of closed one-parameter subgroups of G. We relate the distality of the T-action on Sub$^p_G$ with that of the T-action on G and characterise the same in terms of compactness of the closed subgroup generated by T in Aut$(G)$ when T acts distally on the maximal central torus and G is not a vector group. We extend these results to the action of a subgroup of Aut$(G)$ and equate the distal action of any closed subgroup ${\mathcal H}$ on Sub$^p_G$ with that of every element in ${\mathcal H}$. Moreover, we show that a connected Lie group G acts distally on Sub$^p_G$ by conjugation if and only if G is either compact or is isomorphic to a direct product of a compact group and a vector group. Some of our results generalise those of Shah and Yadav.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.