Let  $\to $ be a continuous
$\to $ be a continuous  $\protect \operatorname {\mathrm {[0,1]}}$-valued function defined on the unit square
$\protect \operatorname {\mathrm {[0,1]}}$-valued function defined on the unit square  $\protect \operatorname {\mathrm {[0,1]}}^2$, having the following properties: (i)
$\protect \operatorname {\mathrm {[0,1]}}^2$, having the following properties: (i)  $x\to (y\to z)= y\to (x\to z)$ and (ii)
$x\to (y\to z)= y\to (x\to z)$ and (ii)  $x\to y=1 $ iff
$x\to y=1 $ iff  $x\leq y$. Let
$x\leq y$. Let  $\neg x=x\to 0$. Then the algebra
$\neg x=x\to 0$. Then the algebra  $W=(\protect \operatorname {\mathrm {[0,1]}},1,\neg ,\to )$ satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus. Let
$W=(\protect \operatorname {\mathrm {[0,1]}},1,\neg ,\to )$ satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus. Let  $x\to _{\text {\tiny \L }}y=\min (1,1-x+y)$ and
$x\to _{\text {\tiny \L }}y=\min (1,1-x+y)$ and  $\neg _{\text {\tiny \L }}x=x\to _{\text {\tiny \L }} 0 =1-x.$ Then there is precisely one isomorphism
$\neg _{\text {\tiny \L }}x=x\to _{\text {\tiny \L }} 0 =1-x.$ Then there is precisely one isomorphism  $\phi $ of W onto the standard Wajsberg algebra
$\phi $ of W onto the standard Wajsberg algebra  $W_{\text {\tiny \L }}= (\protect \operatorname {\mathrm {[0,1]}},1,\neg _{\text {\tiny \L }},\to _{\text {\tiny \L }})$. Thus
$W_{\text {\tiny \L }}= (\protect \operatorname {\mathrm {[0,1]}},1,\neg _{\text {\tiny \L }},\to _{\text {\tiny \L }})$. Thus  $x\to y= \phi ^{-1}(\min (1,1-\phi (x)+\phi (y)))$.
$x\to y= \phi ^{-1}(\min (1,1-\phi (x)+\phi (y)))$.