We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Adaptive radiotherapy (ART) is commonly used to mitigate effects of anatomical change during head and neck (H&N) radiotherapy. The process of identifying patients for ART can be subjective and resource-intensive. This feasibility project aims to design and validate a pipeline to automate the process and use it to assess the current clinical pathway for H&N treatments.
Methods:
The pipeline analysed patients’ on-set cone-beam CT (CBCT) scans to identify inter-fractional anatomical changes. CBCTs were converted into synthetic CTs, contours were automatically generated, and the original plan was recomputed. Each synthetic CT was evaluated against a set of dosimetric goals, with failed goals causing an ART recommendation.
To validate pipeline performance, a ‘gold standard’ was synthesised by recomputing patients’ original plans on a rescan-CT acquired during treatment and identifying failed clinical goals. The pipeline sensitivity and specificity compared to this ‘gold standard’ were calculated for 12 ART patients. The pipeline was then run on a cohort of 12 ART and 14 non-ART patients, and its sensitivity and specificity were instead calculated against the clinical decision made.
Results:
The pipeline showed good agreement with the synthesised ‘gold standard’ with an optimum sensitivity of 0·83 and specificity of 0·67. When run over a cohort containing both ART and non-ART patients and assessed against the subjective clinical decision made, the pipeline showed no predictive power (sensitivity: 0·58, specificity: 0·47).
Conclusions:
Good agreement with the ‘gold standard’ gives confidence in pipeline performance and disagreement with clinical decisions implies implementation could help standardise the current clinical pathway.
This study aimed to assess the perception of radiographers on the difficulties encountered during the delineation of organs at risk (OARs) for radiotherapy planning and the methods that could be used to facilitate this process.
Methodology:
A self-designed questionnaire was distributed to all radiographers (n = 29) employed at the radiotherapy department in Malta. The survey assessed the challenges faced by the radiographers during the delineation of various OARs and inquired about the perceived effectiveness of specific measures that could be used to facilitate the delineation process using a Likert scale ranging from 1 (not difficult/effective) to 5 (very difficult/effective).
Results:
The response rate was 79%. Overall, the delineation of OARs was rated as slightly difficult (mean score 1.95 ± 0.33). Nevertheless, some OARs, such as the parotid, stomach and brain stem, were deemed more difficult to contour with a mean score of 3 or higher. The implementation of peer review was perceived as the most influential factor in reducing delineation difficulty (mean score 4.59 ± 0.58), followed by contouring training (mean score 4.48 ± 0.58) and training on artificial intelligence (AI) (mean score 4.35 ± 0.48).
Conclusion:
The introduction of peer review, training and AI could facilitate the delineation of OARs.
To analyse the dosimetric benefit of the hybrid inverse planning optimisation (HIPO) planning method over the graphical optimisation (GrO) planning method for 3D volume-based intravaginal brachytherapy (IVBT) in a mono-centre patient cohort.
Material and methods:
Twenty-five patients surgically staged with endometrial cancer were considered for the study. All the patients had received adjuvant IVBT for three fractions with one-time computed tomography image-based planning. The data on the patient, tumour, plan, and treatment characteristics were retrieved from the database. All the plans were re-optimised with GrO and HIPO techniques for this comparison study. The different dosimetric parameters were compared between the two methods, and the collected data were tabulated and shown graphically. The statistical evaluation was performed with IBM SPSS version 26, and Origin Pro 8.5 was employed for plots.
Results:
HIPO plans show similar target coverage in terms of D 90(%), V 95(%) and conformity index with no significant statistical difference from the GrO plans with an acceptable increase in homogeneity index (0·087 ± 0·062%). It succeeds in achieving a statistically significant reduction of dose to organs at risk such as D0·1 cc, D1·0 cc and D2·0 cc for the bladder (11·59%, 4·8% and 3·99%), rectum (41·33%, 16·9% and 16·05%) and sigmoid (20·97%, 13·53% and 11·21%), respectively, in comparison with GrO optimisation.
Conclusion:
Considering the dosimetric outcome of 3D-based IVBT, it is suggested to adopt inverse optimisation techniques like HIPO over GrO to achieve higher quality treatment plan in terms of adequate target dose and lesser dose to OARs.
This is a dosimetric study to compare the feasibility of carotid artery sparing as a primary objective, as well as planning target volume coverage and dose to spinal cord as a secondary objective, by using 3D conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) for patients with early glottis cancer.
Patients and methods
Six patients who had been treated for early stage glottic carcinoma (stage T1-2 N0M0) were included in this study. All patients were immobilised in the supine position with a thermoplastic mask and treatment planning computed tomography scans were obtained from the top of the skull to the top of aortic arch with a 3-mm slice thickness. Two plans were created for every patient, one using 3DCRT and the second using IMRT. Comparison between the two plans was undertaken and analysis was made regarding the dose to the carotids arteries, target coverage and doses to the organs at risk.
Results
For target coverage, the V95% for both plans was the same with no significant difference, hot spots were the highest in 3DCRT with p=0·002, the homogeneity index for IMRT plan was better than 3DCRT (p=0·0001). Regarding the dose to the carotids, it was significantly lower in the IMRT plan compared with the 3DCRT plan (p=0·01). The spinal cord dose was significantly higher in the IMRT plan.
Conclusion
IMRT significantly reduces the radiation dose to the carotid arteries compared with 3DCRT while maintaining clinical target volume coverage. Such a results assists in decreasing the incidence of radiation-induced carotid stenosis, thus improving the quality of life for patients.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.