To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
How electronics can be used to alter and/or create musical signals is considered. Emphasis is on those techniques where physics is evident, recognizing that much is now done using programming languages. Basic effects done using simple physics include distortion, reverberation, and tremolo. Various signal-processing and playback techniques are also used, along with psychoacoustics, to provide surround sound and other effects. Electronic music can be created using the Hammond organ, a theremin, and electronic synthesizers. A basic synthesizer will combine a carrier tone and a time-dependent amplitude for that tone in order to create different sounds. Although synthesizers are often controlled by keyboards, other user interfaces have also been developed that, for example, resemble a drum kit or a woodwind instrument.
People with schizophrenia recognize speech poorly under multiple-people-talking (informational masking) conditions. In reverberant environments, direct-wave signals from a speech source are perceptually integrated with the source reflections (the precedence effect), forming perceived spatial separation (PSS) between different sources and consequently improving target-speech recognition against informational masking. However, the brain substrates underlying the schizophrenia-related vulnerability to informational masking and whether schizophrenia affects the unmasking effect of PSS are largely unknown.
Method
Using psychoacoustic testing and functional magnetic resonance imaging, respectively, the speech recognition under either the PSS or perceived spatial co-location (PSC) condition and the underlying brain substrates were examined in 20 patients with schizophrenia and 16 healthy controls.
Results
Speech recognition was worse in patients than controls. Under the PSS (but not PSC) condition, speech recognition was correlated with activation of the superior parietal lobule (SPL), and target speech-induced activation of the SPL, precuneus, middle cingulate cortex and caudate significantly declined in patients. Moreover, the separation (PSS)-against-co-location (PSC) contrast revealed (1) activation of the SPL, precuneus and anterior cingulate cortex in controls, (2) suppression of the SPL and precuneus in patients, (3) activation of the pars triangularis of the inferior frontal gyrus and middle frontal gyrus in both controls and patients, (4) activation of the medial superior frontal gyrus in patients, and (5) impaired functional connectivity of the SPL in patients.
Conclusions
Introducing the PSS listening condition efficiently reveals both the brain substrates underlying schizophrenia-related speech-recognition deficits against informational masking and the schizophrenia-related neural compensatory strategy for impaired SPL functions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.