Let
$p$ be a prime and
$F$ a field containing a primitive
$p$ -th root of unity. Then for
$n\,\in \,\mathbb{N}$ , the cohomological dimension of the maximal pro-
$p$ -quotient
$G$ of the absolute Galois group of
$F$ is at most
$n$ if and only if the corestriction maps
${{H}^{n}}\left( H,\ {{\mathbb{F}}_{p}} \right)\,\to \,{{H}^{n}}\left( G,\ {{\mathbb{F}}_{p}} \right)$ are surjective for all open subgroups
$H$ of index
$p$ . Using this result, we generalize Schreier's formula for
${{\dim}_{{{\mathbb{F}}_{p}}}}\,{{H}^{1}}\,\left( H,\ {{\mathbb{F}}_{p}} \right)$ to
${{\dim}_{{{\mathbb{F}}_{p}}}}{{H}^{n}}\left( H,\ {{\mathbb{F}}_{p}} \right)$ .