In this paper, the quaternionic hyperbolic ideal triangle groups are parametrized by a real one-parameter family
$\{{{\phi }_{s}}\,:\,s\,\in \,\mathbb{R}\}$ . The indexing parameter s is the tangent of the quaternionic angular invariant of a triple of points in
$\partial \mathbf{H}_{\mathbb{H}}^{2}$ forming this ideal triangle. We show that if
$s>\sqrt{125/3},$ then
${{\phi }_{S}}$ is not a discrete embedding, and if
$s\,\le \,\sqrt{3\text{5}}$ , then
${{\phi }_{S}}$ is a discrete embedding.