This article introduces item response models for rating relational data. The relational data are obtained via ratings of senders and receivers in a directed network. The proposed models allow comparisons of senders and receivers on a one-dimensional latent scale while accounting for unobserved homophilic relationships. We show that the approach effectively captures reciprocity and clustering phenomena in the relational data. We estimate model parameters using a Bayesian specification and utilize Markov Chain Monte Carlo methods to approximate the full conditional posterior distributions. Simulation studies demonstrate that model parameters can be recovered satisfactorily even when the dimensionality of the network is small. We also present an extensive empirical application to illustrate the usefulness of the proposed models for complete and incomplete networks.