To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter covers the multiplicative weights update method, a quantum algorithmic primitive for certain continuous optimization problems. This method is a framework for classical algorithms, but it can be made quantum by incorporating the quantum algorithmic primitive of Gibbs sampling and amplitude amplification. The framework can be applied to solve linear programs and related convex problems, or generalized to handle matrix-valued weights and used to solve semidefinite programs.
This chapter covers applications of quantum computing in the area of continuous optimization, including both convex and nonconvex optimization. We discuss quantum algorithms for computing Nash equilibria for zero-sum games and for solving linear, second-order, and semidefinite programs. These algorithms are based on quantum implementations of the multiplicative weights update method or interior point methods. We also discuss general quantum algorithms for convex optimization which can provide a speedup in cases where the objective function is much easier to evaluate than the gradient of the objective function. Finally, we cover quantum algorithms for escaping saddle points and finding local minima in nonconvex optimization problems.
This chapter covers quantum interior point methods, which are quantum algorithmic primitives for application to convex optimization problems, particularly linear, second-order, and semidefinite programs. Interior point methods are a successful classical iterative technique that solve a linear system of equations at each iteration. Quantum interior point methods replace this step with quantum a quantum linear system solver combined with quantum tomography, potentially offering a polynomial speedup.
A homogeneous real polynomial $p$ is hyperbolic with respect to a given vector $d$ if the univariate polynomial $t\,\mapsto \,p(x\,-\,td)$ has all real roots for all vectors $x$. Motivated by partial differential equations, Gårding proved in 1951 that the largest such root is a convex function of $x$, and showed various ways of constructing new hyperbolic polynomials. We present a powerful new such construction, and use it to generalize Gårding’s result to arbitrary symmetric functions of the roots. Many classical and recent inequalities follow easily. We develop various convex-analytic tools for such symmetric functions, of interest in interior-point methods for optimization problems over related cones.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.