Let   $\mathfrak{a}$  be an ideal of a Noetherian local ring
 $\mathfrak{a}$  be an ideal of a Noetherian local ring   $R$  and let
 $R$  and let   $C$  be a semidualizing
 $C$  be a semidualizing   $R$ -module. For an
 $R$ -module. For an   $R$ -module
 $R$ -module   $X$ , we denote any of the quantities
 $X$ , we denote any of the quantities   $\text{f}{{\text{d}}_{R}}X,\,\text{Gf}{{\text{d}}_{R}}X$  and
 $\text{f}{{\text{d}}_{R}}X,\,\text{Gf}{{\text{d}}_{R}}X$  and   ${{\text{G}}_{\text{C}}}-\text{f}{{\text{d}}_{R}}\,X\,\text{by}\,\text{T}\left( X \right)$ . Let
 ${{\text{G}}_{\text{C}}}-\text{f}{{\text{d}}_{R}}\,X\,\text{by}\,\text{T}\left( X \right)$ . Let   $M$  be an
 $M$  be an   $R$ -module such that
 $R$ -module such that   $\text{H}_{\mathfrak{a}}^{i}\left( M \right)\,=\,0$  for all
 $\text{H}_{\mathfrak{a}}^{i}\left( M \right)\,=\,0$  for all   $i\,\ne \,n$ . It is proved that if
 $i\,\ne \,n$ . It is proved that if   $T\left( M \right)\,<\,\infty$ , then
 $T\left( M \right)\,<\,\infty$ , then   $\text{T}\left( \text{H}_{\mathfrak{a}}^{n}\left( M \right) \right)\,\le \,\text{T}\left( M \right)\,+\,n$ , and the equality holds whenever
 $\text{T}\left( \text{H}_{\mathfrak{a}}^{n}\left( M \right) \right)\,\le \,\text{T}\left( M \right)\,+\,n$ , and the equality holds whenever   $M$  is finitely generated. With the aid of these results, among other things, we characterize Cohen–Macaulay modules, dualizing modules, and Gorenstein rings.
 $M$  is finitely generated. With the aid of these results, among other things, we characterize Cohen–Macaulay modules, dualizing modules, and Gorenstein rings.