With models and research designs ever increasing in complexity, the foundational question of model identification is more important than ever. The determination of whether or not a model can be fit at all or fit to some particular data set is the essence of model identification. In this article, we pull from previously published work on data-independent model identification applicable to a broad set of structural equation models, and extend it further to include extremely flexible exogenous covariate effects and also to include data-dependent empirical model identification. For illustrative purposes, we apply this model identification solution to several small examples for which the answer is already known, including a real data example from the National Longitudinal Survey of Youth; however, the method applies similarly to models that are far from simple to comprehend. The solution is implemented in the open-source OpenMx package in R.