
1 String theory and supergravity

As stated in the Preface, this book assumes some rudimentary knowledge of string
theory, but it is a good idea to recall the basics. The field is notoriously vast and
complex, so this chapter should not be understood as a replacement for serious
study on one of the many great introductions [1–11]. In most of the book, we will
approximate string theory by supergravity, an effective theory of gravitons and other
fields; the presentation will be biased toward that.

In this chapter, we also assume knowledge of general relativity (GR) and some
acquaintance with spinors, but we will try to keep mathematical sophistication at a
minimum. We will develop some ideas, such as spinors and differential geometry, in
much greater detail in the next few chapters before we return to physics. Still, already
in this chapter we will pepper our presentation with occasional forward references to
those mathematically more advanced treatments, to whet the reader’s appetite.

1.1 Perturbative strings

A quantum field collects creation (and annihilation) operators for a representation
of the Poincaré group. Once one fixes the value of the momentum p of the created
state, the remaining degrees of freedom are a representation of the little group, or
stabilizer, of p, namely the subgroup Stab(p) ⊂ SO(d) of elements that leave p
invariant. This is

Stab(p) = SO(d −1) (p2 < 0) , Stab(p) = SO(d −2) �Rd−2 (p2 = 0) , (1.1.1)

for the massive or massless case. (We will review the p2 = 0 case in Section 3.3.6.)
In the massless case, we would also have the possibility of selecting an infinite-
dimensional representation, but this is usually regarded as exotic; so we select
a finite-dimensional representation, ignoring the Rd−2 factor. Ordinary fields then
represent objects with finitely many degrees of freedom, which we call spin and
helicity for m2 > 0 and = 0, respectively. Moreover, we usually take these objects to
interact via terms of the type

∫
ddxφ1(x) . . . φ2(x): these allow the value of a field

to influence directly that of another only at the same point.
All these reasons make us think of the quanta of a field as point particles. To

describe a quantum theory of interacting extended objects, we need to change this
picture somehow. First of all, a string can have infinitely many vibration modes,
so a field that creates a string must be somehow a collection of infinitely many
ordinary fields. Second, extended objects can interact when their centers of mass
are not superimposed. So the interaction terms should be nonlocal.1
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2 String theory and supergravity

Such a string field theory (SFT) is fascinating but also just as complicated as
our description suggests. So in fact most studies of interacting strings focus on
an approach that is first-quantized: one first decides the Feynman diagram one
wants to consider, and then computes the amplitude associated with it. (A similar
approach is used sometimes in quantum field theory too, under the name of world-
line formalism.)

In this section, we will review quickly some aspects of this perturbative treatment
of string interactions. There are five possible consistent string models:

• Type IIA
• Type IIB
• Heterotic with gauge group E8 × E8

• Heterotic with gauge group SO(32)
• Type I

All these select d = 10 as spacetime dimension, in a sense we will clarify later in this
chapter. The last case, type I, can be viewed as a certain quotient procedure from IIB
strings, which we will introduce in Section 1.4.4. So in this section we will discuss
the other four. We will actually start our discussion from a model that has a tachyon,
namely a scalar with a negative mass, but whose discussion is simpler: the bosonic
string.

1.1.1 Bosonic strings

The action for a particle moving in a curved background is proportional to its “length
in spacetime,” namely, to the proper time measured along its world-line (its trajectory
γ in spacetime):

Spart = −m
∫
γ

dσ0

√
−gμν ẋμ ẋν , (1.1.2)

where xμ (σ0) are the coordinates of the point in spacetime as a function of the world-
line coordinate σ0, and ẋμ ≡ ∂0xμ. In flat space, this is indeed minimized on straight
lines in spacetime, which maximize proper time. For curved gμν , (1.1.2) is minimized
on geodesics. If we also have a Maxwell field and our particle is charged, we have to
add a term

Spart,EM = q
∫
γ

dσ0 Aμ∂0xμ, (1.1.3)

where q is the charge, and Aμ is the vector potential. In Section 4.1.4, we will see
that the integrand is an example of a natural operation called pull-back.

String action
By analogy with (1.1.2), the natural action for a string would seem to be the volume
of its two-dimensional world-sheet in spacetime. However, it is classically equivalent
to the Polyakov action, which is easier to quantize:

SF1,g = −
1
2

TF1

∫
Σ

d2σhαβ
√
−hgMN∂αxM∂βxN . (1.1.4)
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3 Perturbative strings

This type of action is also called a sigma model, for reasons going back to four-
dimensional models of mesons, or sometimes nonlinear sigma model when gMN is
not flat. The xM (σ0, σ1), M = 0, . . . , d −1, describe the embedding of Σ in physical
spacetime (often called target space), and h is a metric on Σ. The mass m in (1.1.2)
has been replaced by the mass/length ratio, or tension:

TF1 =
1

2πl2
s

. (1.1.5)

“F” stands for fundamental, to distinguish this string from other extended objects
that will appear later; 1 denotes the space extension of the string. The constant ls is
called string length. (We will always keep it explicit in this chapter, but later we will
often work in string units and set ls = 1.)

In this section, we are going to focus on strings that are closed or, in other words,
that have no boundary. A generic1 time slice is then a collection of several copies of
the circle S1. The time evolution of each of these for a finite time will be a cylinder;
then σ1 is a periodic coordinate, σ1 ∼ σ1+π. These cylinders are then glued together
at some values of σ0 to obtain a general Σ.

Spectrum in flat space
Quantizing (1.1.4) is challenging for general gMN but relatively easy in Minkowski
space gMN = ηMN : superficially (1.1.4) then becomes a collection of free bosons,
with equations of motion ∂2xM = 0. For a closed string, the slice at σ0 = constant
is an S1; there are then discrete Fourier modes for each xM . Since the equation of
motion is of second order, the states are in correspondence to the values of these
Fourier modes and their derivatives. Alternatively, we can write a solution of the
world-sheet equations of motion as xM = xM (σ+) + xM (σ−), where σ± = σ1 ± σ0,
and introduce Fourier modes αM

i , α̃M
i for the left- and right-movers xM (σ±). The

only subtlety is that the world-sheet metric hαβ is a Lagrange multiplier, which gives
a constraint. This can be taken care of in many ways: by solving the constraint, or
by introducing Faddeev–Popov ghosts and the Becchi–Rouet–Stora–Tyutin (BRST)
method (the so-called covariant quantization). Skipping many interesting details,
here we will just give the results.

Even for a fixed momentum, the spectrum has infinitely many states, of the form

αN1
−i1 . . . α

Nn

−in α̃
Ñ1
−ı̃1 . . . α̃

Ñn

−ı̃n |0〉, (1.1.6)

where |0〉 is the world-sheet vacuum, and ik , jk ≥ 0 (possibly repeated). As we
mentioned, these correspond to the vibration modes of the string, and in a spacetime
picture they would require infinitely many ordinary quantum fields to create them.
Their masses are

m2 =
4
l2
s

(
2 − d

24
+ N

)
, (1.1.7)

where N =
∑

ik =
∑
ı̃k is a nonnegative integer. The identity between these two

expressions is called level matching and is the link between the left- and right-moving
sectors, which otherwise proceed on parallel tracks. If d > 2, we see that the lowest

1 The mathematical meaning of the word generically, which we will use in this book, is “for any choice
except for a set of measure zero.”
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4 String theory and supergravity

value of m2, for N = 0, is actually negative. Such a mode is usually called a tachyon
and signals an instability. For this reason, the bosonic string we are discussing in this
section is usually only considered a toy model.

Nevertheless, it already displays a very interesting feature. For the critical
dimension d = 26, the modes with n = 1 in (1.1.6) and (1.1.7) are massless. They
read

αM
−1α̃

N
−1 |0〉 , (1.1.8)

and so they correspond to fields with two indices. Among these we thus find a
massless spin-two field hMN = δgMN . The action (1.1.4) can then be thought of
as a string moving in a condensate of such a field. This is a bit similar to expanding
a quantum field theory (QFT) around a vacuum where a field has acquired a nonzero
expectation value.

So we have found that in d = 26, the string modes include those that would
normally be associated with a graviton. Remarkably, the scattering amplitudes one
obtains with this formalism are finite. The string tension acts as a regulator: Taking
the limit ls → 0, the scattering amplitudes become divergent again. In this limit, the
theory becomes a local QFT model again, and a local theory of gravity has divergent
amplitudes.

Coupling to condensates of other fields
Among (1.1.8), we find other massless modes. Following (1.1.1), we need to consider
only the components of (1.1.8) in the d − 2 = 24 dimensions transverse to the
momentum p, which are 242. The physical components hMN of a graviton are
represented by a traceless 24 × 24 matrix; this is the generalization of the transverse
traceless (TT) gauge familiar from the treatment of gravitational waves in four
dimensions. The remaining modes are thus the antisymmetric part of (1.1.8) and
its trace. The fields that create these states are an antisymmetric Kalb–Ramond field
BMN = −BNM , and a scalar field φ called dilaton. So in total the massless fields of
the bosonic string are

gMN , BMN , φ . (1.1.9)

We can consider condensates of BMN and φ, too; this leads to the extra terms in
the action:

SF1,B,φ = −
1
2

TF1

∫
Σ

d2σ
[
εαβBMN∂αxM∂βxN + l2

s

√
−hR(2)φ

]
. (1.1.10)

Here R(2) is the scalar curvature of the world-sheet metric hαβ, and ε =
(

0 −1
1 0

)
. The

coupling with B is the natural generalization of the coupling (1.1.3). The coupling
with the dilaton is peculiar in that

1
4π

∫
Σ

√
−hR(2) = 2 − 2g , (1.1.11)

where g is the genus of the world-sheet Σ. This is the stringy analogue of the number
of loops, and can be intuitively described (when Σ has no boundary) as the number
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5 Perturbative strings

of handles; a more formal definition will be given in Section 4.1.10. Because of this,
the computation of all scattering amplitudes is organized in powers:

g
2g−2
s , gs ≡ eφ . (1.1.12)

We can think of gs as a string coupling constant: when it is small, the powers (1.1.12)
are smaller for Riemann surfaces Σ of increasing g, which can be thought of as the
stringy analogue of Feynman diagrams of increasing complexity.

The action

Sbos = SF1,g + SF1,B,φ (1.1.13)

is classically invariant under general coordinate transformation σα → σ′α (σ0, σ1),
if we also take care to transform the world-sheet metric hαβ. This is a gauge
invariance, in that it doesn’t affect the physical configuration, the image of the
world-sheet embedding xμ (σ), but only how we parameterize it. Equation (1.1.13)
is also invariant under Weyl rescaling hαβ → e f hαβ. In two dimensions, one can fix
the coordinate-change freedom by taking, for example, hαβ to have constant scalar
curvature. Even so, a residual invariance remains: coordinate transformations that
leave the metric invariant up to a Weyl transformation. These are called conformal
transformations.

Conformal invariance and effective action
It is crucial that this residual gauge invariance remains at the quantum level. It
decouples potentially harmful negative-norm states that would come from the fact
that x0 in (1.1.4) has a wrong-sign kinetic term. This is similar to what happens in
the quantization of the electromagnetic field, for example. Conformal invariance is
also behind the absence of high-energy divergences. Usually scattering amplitudes
become problematic when two particles collide at a small impact parameter. The
world-sheet of a string scattering is a non-compact Riemann surface with several
spikes si corresponding to the incoming and outgoing strings. Conformal invariance
means that the distance between two points on the world-sheet has no intrinsic
meaning: only ratios of distances do. So a small impact parameter might seem to
correspond to two such spikes s1 and s2 getting close, but that only means that they
are close relative to their distance from other external strings si . This corresponds to
a Riemann surface that develops a long neck, where the two si are both attached, far
from the others.

The Noether current associated to dilatations in a field theory is Tμν xν , where Tμν
is the stress–energy tensor. This is conserved if 0 = ∂μ (Tμν xν) = Tμνgμν = T

μ
μ .

Evaluating the expectation value 〈Tμ
μ 〉 of this trace is thus a way to check if there is a

Weyl anomaly.
From the point of view of the world-sheet, the spacetime fields (1.1.9) are really

couplings for the action of the fields xM (σ). So a Weyl anomaly can also be detected
by computing the beta functions of the action (1.1.13) for the couplings (1.1.9). This
can be obtained by the usual perturbative methods; the coupling for this computation
is given by l2

s , or rather the dimensionless combination l2
s× (spacetime curvature).

This results in the following three conditions:
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6 String theory and supergravity

RMN + 2∇M∂Nφ −
1
4

HMPQHN
PQ +O(l2

s ) = 0 , (1.1.14a)

∇M (e−2φHM
NP) +O(l2

s ) = 0 , (1.1.14b)

2
3l2

s

(26 − d) + R − 1
2
|H |2 − 4eφ∇2e−φ +O(l2

s ) = 0 . (1.1.14c)

We have introduced

HMNP = ∂M BNP + ∂N BPM + ∂PBMN , |H |2 ≡ 1
6

HMNPHMNP . (1.1.15)

This can be considered as a field-strength for the potential BMN , similar to the
relation between FMN = ∂M AN −∂N AM and AM in electromagnetism. Indeed, there
is also a gauge transformation

BMN → BMN + ∂M λ̂N − ∂N λ̂M , (1.1.16)

under which (1.1.15) is invariant. The world-sheet action (1.1.10) is invariant too
under this, because the transformation adds a total derivative term.

From spacetime point of view, where (1.1.9) are fields, (1.1.14) are to be
interpreted as equations of motion. They can be obtained by extremizing2

Sbos =
1

2κ2
b

∫
ddx

√
−ge−2φ

(
2

3l2
s

(26 − d) + R + 4∂Mφ∂Mφ −
1
2
|H |2 +O(l2

s )

)
(1.1.17)

with respect to (1.1.9). By dimensional reasons, κb has dimension l12
s . (The metric

coefficients have no dimension, while R contains two derivatives and has mass
dimension two.) In general, the Planck mass mP is defined as the mass scale entering
the Einstein–Hilbert action; the Planck length lP is its inverse, and (1.1.17) tells us
that it is proportional to ls.

As a consistency check, we see that flat space is a solution of (1.1.14) only if we
set d = 26, which is the value where we found the massless fields (1.1.9) in the
first place. More generally, to trust (1.1.14) we have to make sure that the expansion
parameter l2

s× (curvature) is small, so we better solve those equations of motion
separately at every order. This leads again to taking

d = 26 . (1.1.18)

It is conceptually possible to consider solutions where d � 26, and the first term
in (1.1.14c) competes with the others, but in that case we have to worry that the
other terms in the ls expansion become relevant too, and we have not given them
in (1.1.14). If, on the other hand, one is able to prove that a certain world-sheet
model is conformal exactly, without using the ls expansion at all, then d = 26 is
not necessary. There are not many such cases: one is the linear dilaton background,
where φ is linear in one of the coordinates. This leads to noncritical string theories,
which historically have been important toy models.

Another point of view on the critical dimension is this. We observed that (1.1.13)
has conformal invariance. Conformal transformations form a group; for flat space it
is SO(d − 2, 2) for d > 2, but for d = 2 it becomes infinite dimensional. Indeed,

2 This variation is a little more involved than the usual Einstein–Hilbert action variation because of the
prefactor e−2φ . More details will be given in Section 10.1.2.
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7 Perturbative strings

any transformation x± → x±′(x±) is conformal for any metric of the type ds2 =

e f dx+dx−. The generators Lm, m ∈ Z, of such transformations on the x+ obey the
Lie algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1) δn+m,0 , (1.1.19)

called Virasoro algebra. The L0, L±1 form an SO(1, 2) subalgebra where c does
not appear. As usual, spacetime transformations are generated by the stress–energy
tensor, so these Lm are related to it. After a Wick rotation, x+ → z = σ1 + iσ0, and
we can collect all the generators in

Tzz (z) =
∑
n

Lnz−n−2 . (1.1.20)

In a Lie algebra, the commutation relations should always be linear, so we need to
think of the second term in (1.1.19) as containing a new generator c, which commutes
with all the others, and thus lies in the center of the algebra; so c in (1.1.19) is called
central charge. The L̃m on the x− variable generate a second copy of the same algebra
(1.1.19), and they are collected in Tz̄z̄ .

This c is also a measure of the Weyl anomaly: for any QFT model that is conformal
on a flat (world-sheet) metric hαβ = ηαβ, a nonzero c tells us that conformal
invariance is broken for more general hαβ � ηαβ. A free boson contributes c = 1,
while the ghosts give −26. Thus if we quantize around flat space, where the xM (σ)
bosons are free, for quantum conformal invariance we need to take d = 26.

The fact that the action (1.1.17) exists at all is nontrivial from the point of view of
the world-sheet derivation we described. We can think of it as being an approximation
to the string field theory action SSFT, which would also contain the massive fields
creating all the states (1.1.6). We can call it an effective action, in the usual quantum
field theory sense: It reproduces the results one would obtain from SSFT, at energies
that are low, namely much smaller than l−1

s . Indeed, another way to compute (1.1.17)
is to compute string scattering amplitudes using the world-sheet approach, and then
guessing what spacetime action would reproduce them.

The diagrams leading to (1.1.17) have g = 0 in (1.1.12), leading to g−2
s = e−2φ,

thus explaining the presence of that exponential. The higher powers of ls hidden
in (1.1.17) also receive contributions from higher values of g (and thus from
more complicated Feynman diagrams). So the effective action will have a double
expansion in powers of both:

S =
∑
j,k

Sj,k l jse
kφ . (1.1.21)

These higher-order corrections can in principle be computed; we will see some
examples for superstrings. When we first discover that GR is non-renormalizable
and needs (curvature)2 counterterms [25], we might perhaps hope that by adding
more and more such counterterms, with arbitrary powers (curvature)k , we might
eventually find a theory that has no divergence. Finding such a renormalizable theory
of gravity would be very hard without some sort of guidance: not only would we have
to find a fixed point of the renormalization group (RG) flow by going backward in
energy, but we would also have to worry about modes with wrong kinetic energy,
which in such theories generically abound. (Adding operators with higher numbers
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8 String theory and supergravity

of derivatives to a Lagrangian also adds propagating modes, each of which might be a
ghost.) String theory is renormalizable, and in principle we can reexpress it precisely
as such a sum of infinitely many corrections to (1.1.17).

This discussion seems, however, to assume that the effective action is analytic in
the parameters ls, eφ, or, in other words, that it coincides with its Taylor expansion
(1.1.21). In mathematics, we know many functions that are not analytic, and they
might also appear here. This is the reason we have put the word “perturbative” in the
title of this section; we will make amends in Section 1.4.

Some critics of string theory complain that the theory has not been proven to be
background independent. What they mean is that in the world-sheet approach based
on (1.1.13), we first have to fix a background configuration for the spacetime fields
(1.1.9), and then we can compute an action for the small fluctuations around it. A
priori, it might even be unclear if this procedure is describing a single theory or a
collection of theories that have nothing to do with each other. The emergence of
(1.1.17) should be reassuring in this respect: that effective action can be expanded
around any background, and matches the result of the world-sheet method around it.
A more satisfactory rebuttal is the proof at the level of string field theory in [26].

Torus compactification
Finally, let us have a first taste of string compactifications, by supposing that the
theory lives on R25 × S1. Thus we declare one of the coordinates to be periodically
identified, say x25 ≡ x25 +2πR. Now x25(σ0, σ1) is no longer necessarily periodic as
a function of σ1, even for a closed string: rather, if we take σ1 ∼ σ1 + π, we demand

x25(σ0, σ1 + π) = x25(σ0, σ1) + 2πwR . (1.1.22)

This represents a string that winds w ∈ Z times around the S1. Another new effect
is familiar from quantum mechanics: the overall momentum of the string in the S1

direction is now not continuous but quantized: p25 =
q
R

, q ∈ Z.
The mass spectrum in R25 is now modified from (1.1.7) to

m2 =
4
l2
s

(−1 + N ) +

(
q
R
− w

R

l2
s

)2

=
4
l2
s

(−1 + Ñ ) +

(
q
R
+ w

R

l2
s

)2

, (1.1.23)

where now N =
∑

ik and Ñ =
∑

k ı̃k are no longer necessarily equal (as they were in
(1.1.7)); comparing the two expressions, we have N − Ñ = wq.

For a generic value of R, the massless spectrum is still (1.1.8) and (1.1.9); but now
it should be reinterpreted. The components

gM 25 , BM 25 (1.1.24)

are now two vector fields in R25; g25 25 is a scalar. The remaining components of
(1.1.9) then give a metric, a Kalb–Ramond field, and a scalar in R25.

From (1.1.23), however, we also see another option: if q
R
− w R

l2s
= ± 2

ls
, then we

have a new massless state for N = 0. This is possible for

R = ls , (1.1.25)

taking q = −w = ±1; then Ñ =
∑

k ı̃k = 1. This state α̃M
−1 |0〉 has a single index,

and so it is created by a vector field. At this value of R, we also have the possibility
of using the same trick with the other expression in (1.1.23), this time leading to
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9 Perturbative strings

q = w = ±1, Ñ = 0, N = 1. So we have a total of four more vector fields in R25.
It turns out that these combine with the previous two (1.1.24) to give a nonabelian
gauge group

SU(2) × SU(2) . (1.1.26)

This compactification was rather nice in that the string could be quantized exactly,
at least perturbatively in gs. In more complicated cases, we won’t be so lucky, and
we will have to limit ourselves to the less powerful effective field theory methods,
potentially missing phenomena such as this non-abelian gauge group enhancement.

1.1.2 Type II superstrings

Supersymmetric world-sheet action
The world-sheet action (1.1.13) can be made supersymmetric. At the most basic
level, this means that we promote the xM (σ) to a function of σ and of new formal
coordinates θ± that anticommute: θ+θ− = −θ−θ+, (θ±)2 = 0. The Taylor expansion
in the new coordinates truncates:

XM = xM + θ+ψM
+ + θ

−ψM
− + θ

+θ−FM . (1.1.27)

We can also introduce the derivative operators

D± = ∂θ± + iθ±∂± , ∂± ≡ ∂σ± . (1.1.28)

Then, (1.1.4), for example, is replaced by

S1,1
F1,g = −

1
2

TF1

∫
Σ

d2σd2θ(g + B)MN (X )D+XM D−XN , (1.1.29)

with the integration rule
∫

dθ±θ± = 1,
∫

dθ±1 =
∫

dθ±θ∓ = 0. We also added the
contribution from B. The terms (1.1.10) can also be supersymmetrized in this way.
The final result is quite messy for a general background where gMN and BMN are
arbitrary; it can be found, for example, in [27, sec. 6.3.1]. For example, it contains a
kinetic term

gMN (ψM
+ ∂−ψ

N
+ + ψ

M
− ∂+ψ

N
− ) (1.1.30)

for the world-sheet fermions ψM
± .3 The FM in (1.1.27) are auxiliary fields: they have

no kinetic term, and can be replaced with the solutions of their equations of motion.
Since we have introduced a single θ+ and a single θ−, the resulting model is

said to have N = (1, 1) supersymmetry. Any two-dimensional bosonic model can
be promoted to such a model. In the context of compactifications, one often needs to
separate external and internal dimensions, and the supersymmetrization of the world-
sheet model in the latter has more supercharges; a common case one needs is N =
(2, 2). This is more challenging to achieve, because such extended supersymmetry
requires that one combine the xM with each other in pairs. Such a pairing is
reminiscent of the idea of complex coordinates, and is at the root of why differential
geometry is useful for compactifications. This idea will return in Chapter 9.

3 The bosonic world-sheet indices ± are conceptually not the same as the ± on the fermions, denoting
chirality. To emphasize the difference, some authors change the world-sheet indices to + → ++ and
− → =. This also has the benefit that every term in a world-sheet will then have an equal number of
pluses and minuses; see for example [28].
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10 String theory and supergravity

Equation (1.1.29) is called the Neveu–Schwarz–Ramond (NSR) model. While we
introduced it by supersymmetrizing the world-sheet action, we will see later that the
resulting spacetime theory also has the much more nontrivial property of spacetime
supersymmetry.

Spectrum
Even around flat space, the spectrum of (1.1.29) is now more complicated because
it depends on what we impose on the fermionic ψM

± . Since a fermion should only
get back to itself after a 4π rotation, under 2π we can impose either periodic or
antiperiodic boundary conditions, called Neveu–Schwarz (NS) and Ramond (R)
respectively. These can be imposed independently on the ψM

± , leading to four
sectors: NSNS, NSR, RNS, and RR. The spectrum has to be analyzed in each sector
separately, because the Fourier modes for the ψM

± behave differently in each.
In the NS sector, the fermionic Fourier modes are bM

−i−1/2, i ≥ 0. The two lowest-
lying states are

|0〉NS , 1 , m2 =
1

8l2
s

(2 − d) ; (1.1.31a)

bM
−1/2 |0〉NS , 8V , m2 =

1
l2
s

(
(2 − d)

8
+ 1

)
. (1.1.31b)

We have also indicated what representation these states form under the compact part
SO(d − 2) = SO(8) of the massless little group (1.1.1). For (1.1.31b), the subscript
“V” is because there are two more dimension-eight representations of SO(8), which
will soon play a role too.

In the R sector, the fermionic Fourier modes are dM
−i , i ≥ 0. In this case, the vacuum

has already m2 = 0, but in fact it is not unique: the modes dM
0 now don’t raise the

energy, and they act on the space of vacua. These dM
0 satisfy a Clifford algebra

{dM
0 , dN

0 } = 2gMN1, and as a consequence the space of R vacua transforms as a
spinor under spacetime symmetries. In Section 2.1, we will attack Clifford algebras
and spinors systematically in every dimension; for now, we only state the main
features we need, which are quite similar to the properties of gamma matrices in
four dimensions.

• Gamma matrices ΓM can be defined in every dimension as matrices that satisfy
{ΓM , ΓN } = 2gMN1.

• In d = 10 dimensions, they are 32 × 32 matrices; in d = 8, they are 16 × 16.

• The space of spinors on which the ΓM act is a representation for the Lorentz group;
in d = even, it decomposes in two chiralities, for which we introduce indices α, α̇.
Multiplication by a single ΓM changes chirality, so the nonzero blocks are ΓM

αβ̇
and

ΓMα̇β.

• In both d = 10 with Lorentzian signature and d = 8 with Euclidean signature, there
is a choice of ΓM that are all real. (This aspect will be treated more specifically in
Sections 2.2.3 and 2.3.)

As a representation of the transverse SO(8) in the little group (1.1.1), the R states
then form a reducible representation of dimension 16, which further splits in two
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11 Perturbative strings

representation of dimension eight, traditionally called 8S and 8C. We summarize all
this by writing

|0, α〉R , 8S , m2 = 0 ; (1.1.32a)

|0, α̇〉R , 8C , m2 = 0 . (1.1.32b)

The closed-string spectrum is obtained by taking tensor products of these two
sectors. For example, if we impose NS conditions for both ψM

± , we have the NSNS
sector, whose low-lying states are obtained by taking tensor products of two copies
of (1.1.31). Here we see once again the presence of a tachyon, |0〉NS ⊗ |0〉NS. In the
critical dimension

d = 10 , (1.1.33)

this sector contains massless states bM
−1/2b̃M

−1/2 |0〉NS ⊗ |0〉NS, which would be created
by the fields (1.1.9) we encountered for the bosonic string, so we are going to stick
to d = 10 from now on.

Quite nontrivially, just like in the bosonic string, this is also the dimension where
the Weyl anomaly vanishes. This can be checked in any of the methods we saw
for the bosonic string. In terms of the central charge of the Virasoro algebra, for
example, there are now ghosts and superghosts, which give a total contribution
−15. Quantizing around flat space, each boson gives a contribution +1, but now
each fermion gives an extra +1/2. Since (1.1.29) has an equal number of bosons of
fermions, we get (1 + 1/2)d = 15, which leads again to d = 10.

A less welcome similarity with the bosonic string is the presence of a tachyon.
Fortunately, this can be eliminated by the so-called Gliozzi–Scherk–Olive (GSO)
projection on the spectrum. Initially an ad hoc prescription, it later emerged to be
required by consistency when one takes the world-sheet Σ to be a torus, an invariance
under coordinate changes called modular invariance. It projects out |0〉NS in the NS
sector, and also eliminates one of the two sets in (1.1.32). For the left-moving ψM

+ ,
it is immaterial which one we choose; we keep 8S. However, now the choice for the
right-moving ψM

− does matter; this leads to two different theories.
If we keep 8C for the ψM

− , we obtain the theory called IIA string theory; its
spectrum is given in Table 1.1. We use SO(8) group theory to decompose the tensor
products of representations as direct sums. In the last column, we have named the
corresponding spacetime fields.

• In the NSNS sector, the decomposition is that of an 8 × 8 matrix in its symmetric
traceless, antisymmetric and trace, with the same logic that led us to the fields
(1.1.9) for the bosonic string.

Table 1.1. Massless IIA spectrum.

NSNS 8V ⊗ 8V = 35V ⊕ 28V ⊕ 1V gMN , BMN , φ
RNS 8S ⊗ 8V = 56S ⊕ 8C ψ1

Mα , λ1
α̇

NSR 8V ⊗ 8C = 56C ⊕ 8S ψ2
M α̇ , λ2

α

RR 8S ⊗ 8C = 56V ⊕ 8V CMNP , CM
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12 String theory and supergravity

• In the RNS sector, the 8S ⊗ 8V representation has a vector and a spinor index,
leading to an object ΨMα. This is not irreducible: we can use an eight-dimensional
gamma matrix to extract a sort of trace λα̇ ≡ (ΓM )α β̇ΨM β̇, transforming as 8C;
the remaining traceless part of ΨMα is the 56S. Both have one spinor index, and
thus are spacetime fermions. Since they only have an index of one kind (either α
or α̇), they are chiral, or Weyl. In the aforementioned real basis for the ΓM , these
fermions are also all real. The basis-independent notion is called the Majorana
property (Section 2.3.1).

• The NSR sector is similar, but with 8S ↔ 8C. These are also spacetime fermions.
The ψ1

αM , ψ2
α̇M are related by supersymmetry to the metric field, and hence are

called gravitinos. The λ1
α̇, ψ2

α are called dilatinos.

• In the RR sector, we have an object with two spinorial indices:

Cαβ̇ . (1.1.34)

These have two spinor indices, and thus are sometimes called bispinors; they are
spacetime bosons.

A more familiar description for the RR (1.1.34) is obtained by expanding them in a
basis for bispinors. This is familiar from QFT in d = 4: it consists of antisymmetrized
products

ΓMN ≡ 1
2

(ΓMΓN − ΓNΓM ) , ΓMNP =
1
6

(ΓMΓNΓP ± perm.) , (1.1.35)

and so on. The expansion on this basis is called a Fierz identity and will be analyzed
systematically in Section 3.4; for now, we sketch the result. If we contract (1.1.34)
with a single eight-dimensional gamma matrix, we obtain the vector

CM = (ΓM )αβ̇Cαβ̇ , (1.1.36)

which is the 8V there. One can further contract with products of gamma matrices;
with two of them, we obtain ΓMN

αβ or ΓMN

α̇β̇
, which cannot be contracted with (1.1.34),

but with three we do obtain CMNP = (ΓMNP)αβ̇Cαβ̇. This explains the entries in the
bottom-right corner of Table 1.1. By construction, this is completely antisymmetric:

CMNP = −CNMP = −CPNM = −CMPN . (1.1.37)

The number of independent components of a completely antisymmetric tensor with
k indices in d (transverse) dimensions is

(
d
k

)
; for (1.1.37) this gives

(
8
3

)
= 56,

confirming the last row of Table 1.1. One might think that we also need to consider
ΓM1...Mk with higher odd k, but these are actually related to the ones already present
in Table 1.1, as shown by the matching dimension count in the representation.
Sometimes it is convenient to work with a redundant set of RR potentials; this
democratic formalism will be presented in Section 10.1.

The second choice is to keep 8S for the ψM
− . The resulting theory is now called IIB

string, and its spectrum is shown in Table 1.2. Most differences with Table 1.1 are
straightforward; the one worthy of most attention is that now the RR sector consists
of a bispinor

Cαβ . (1.1.38)
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13 Perturbative strings

Table 1.2. Massless IIB spectrum.

NSNS 8V ⊗ 8V = 35V ⊕ 28V ⊕ 1V gMN , BMN , φ
RNS 8S ⊗ 8V = 56S ⊕ 8C ψ1

Mα , λ1
α̇

NSR 8V ⊗ 8S = 56S ⊕ 8C ψ2
Mα , λ2

α̇

RR 8S ⊗ 8S = 35C ⊕ 28C ⊕ 1C C+MNPQ , CMN , C0

In the Fierz expansion, now the ΓMN has the correct index structure, leading to
CMN = (ΓMN )αβCαβ; a similar projection can be defined for all the products
ΓM1...Mk with even k, but in fact k > 6 are redundant, and even the one for k = 4 has
a “self-duality property” that halves its degrees of freedom, and whose consequences
we will see soon. This is the reason of the superscript + on C+MNPQ. Just like for
(1.1.37), by construction these tensors are all completely antisymmetric.

Spacetime supersymmetry
In both IIA and IIB, the spacetime bosons arise from the NSNS and RR sectors, while
the fermions arise from the NSR and RNS sectors. They have the same total number
(128) of degrees of freedom. This is a symptom of the aforementioned spacetime
supersymmetry. These mix the bosonic fields (NSNS, RR) with the fermionic ones
(NSR, RNS). They are rather complicated, and at this stage their expression would
not look very informative. We will have a first look at them in Section 8.2 for the
case where only the metric is present, and in Section 10.1 in full. For now, we
just comment about their infinitesimal parameters, which are two Majorana–Weyl
spinors:

ε1 , ε2 . (1.1.39)

(This is the original reason these theories are called “type II.”) They have the
same chirality as the gravitino: thus in IIA ε1

α has positive chirality, and ε2
α̇ has

negative chirality, while in IIB both εaα have positive chirality. Altogether this gives
32 supercharges, which is the highest number for any supersymmetric theory.

This property is made manifest in the alternative Green–Schwarz model. A more
recent formulation is the Berkovits, or pure spinor, model [29, 30]. (Pure spinors
will play an important role in this book, but for somewhat different reasons.) These
alternative formulations are more complicated, but are better at describing strings in
condensates of RR fields, while with the NSR model (1.1.29) this is difficult.

1.1.3 Heterotic strings

Definition
In both the bosonic string and the superstring, quantization of the left- and right-
movers seems to proceed almost independently. This is because they are almost
free as two-dimensional field theories, apart from the constraint associated to the
Lagrange multiplier hαβ. For example, in the bosonic string spectrum (1.1.6), the
constraint is only visible in the level matching condition mentioned after (1.1.7).

This creates an opportunity: we can try to define a hybrid, or heterotic theory which
looks like the bosonic string for the left-movers, and like the superstring for the
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14 String theory and supergravity

right-movers [31]. This might look impossible: is the spacetime dimension going
to be 26 or 10? The dimension of spacetime, however, is a macroscopic concept,
irrelevant at length scales below lP, where quantum gravity sets in. So a solution
to the puzzling mismatch in dimension is to compactify 16 of the 26 bosonic
coordinates. Provided we manage to satisfy the level matching condition relating
the left- and right-moving sectors, all should be well.

The easiest way to compactify the 16 left-moving bosons xI
+ is to take them to

belong to a torus. In Section 1.1.1, we saw a circle compactification of the bosonic
string: we took one of the coordinates x25 ∼ x25 + 2πR. The simplest torus
would be obtained as T16 ≡ (S1)16, with the same identification for all the xI

+. A
straightforward generalization is to take a basis {RI

a}, a = 1, . . . , 16 of R16, and to
introduce equivalence relations

xI = xI + πRI
a ∀a . (1.1.40)

The set of integer multiples of the {RI
a} is called a lattice Γ. The space defined by

(1.1.40) is topologically still T16; the choice of Γ affects its size and shape. The
momenta are quantized according to

pI RI
a ∈ Z . (1.1.41)

The solutions to this equation are the elements of a colattice: there is a dual set of
vectors pI

a of which all solutions to (1.1.41) are integer multiples.

Spectrum
As usual, now the spectrum is computed independently for the left-movers and for
the right-movers, imposing level matching. For the left-movers, (∂0 − ∂1)xI = 0
relates pI to the RI

a: this generalizes setting q/R = wR/l2
s in (1.1.23). So in fact the

lattice and colattice coincide,4 and Γ is said to be self-dual. Moreover, the analogue
of (1.1.23) now reads

m2 =
4
l2
s

(
−1 + N +

1
2

p̂2
)
=

4
l2
s

Ñ . (1.1.42)

From this we see that 1
2 p̂2 ∈ Z: the lattice is said to be even.

The massless spectrum is again obtained as a tensor product of left- and right-
movers. The latter have both an NS and an R sector, just as in the superstring (recall
(1.1.31) and (1.1.32)). For the left-movers, (1.1.42) gives us two possibilities. We
can take p̂2 = 0 and N = 1: a single Fourier mode acting on the vacuum (compare
with the left-moving part of (1.1.8)). This can be αM

−1, with M = 0, . . . , 9, or αI
−1,

with I = 1, . . . , 16 one of the extra 16 bosonic directions. So far, this gives us the
massless states

αM
−1 |0〉bos ⊗ bM

−1/2 |0〉NS , αM
−1 |0〉bos ⊗ |0, α〉R ; (1.1.43a)

αI
−1 |0〉bos ⊗ bM

−1/2 |0〉NS , αI
−1 |0〉bos ⊗ |0, α〉R . (1.1.43b)

The first in (1.1.43a) gives the familiar (gMN , BMN ,φ) in the NSNS sector of the
superstring; the second is identical to the RNS sector of the superstring. These are

4 At this point, one might also take more generally the lattice to be a sublattice of the colattice, but
modular invariance (already mentioned for the superstring) eliminates this possibility.
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15 Supergravity

Table 1.3. Massless heterotic spectrum.

NS 8V ⊗ 8V = 35V ⊕ 28V ⊕ 1V gMN , BMN , φ
R 8V ⊗ 8S = 56S ⊕ 8C ψMα , λα̇
NS 8V Aa

M

R 8S χa
α

the first two lines in Table 1.3. The (1.1.43b) are 16 abelian vector fields AI
M and

spinors χI
α; they are the Cartan subalgebra part of the second two lines in Table 1.3.

Indeed, we are not done yet, because (1.1.42) allows us a second possibility: we
can take N = 0 and look for p̂2 = 2, namely vectors in Γ of length two. There exist
only two lattices in R16 that are both self-dual and even; both are the root lattices Γg
for a Lie algebra g of a Lie group that can be either

SO(32) or E8 × E8 . (1.1.44)

The elements of Γ of length two are the nonzero roots of g. A tensor product of all
these states with bM

−1/2 |0〉NS and |0, α〉R, as in (1.1.43b), produces one vector field
and one spinor for each nonzero root of g. Both (1.1.44) have rank 16, which is just
the number of the AI

M we found previously. So in total we have Aa
M , χa

α with a =
1, . . . , dim(g), and we reproduce the missing part of the last two lines in Table 1.3.
The Aa

M are the gauge vectors of a nonabelian gauge algebra g. This enhancement is
similar to (1.1.26) for the bosonic string.

The heterotic string has the advantage of having a built-in nonabelian gauge
symmetry. We will see in Section 1.3 that D-branes give an alternative way of
obtaining nonabelian gauge groups G in type II, but only of the type G = U(N ); later
in Section 1.4.4 we will see G = SO(N ) and Sp(N ). Obtaining a more interesting
gauge group such as E8 is in fact possible in IIB, but requires more sophisticated
techniques that we will only study much later, in Section 9.4.5

1.2 Supergravity

An effective spacetime action for superstrings can be found using the same methods
that led us to (1.1.17). Because of its spacetime supersymmetry, it is called 10-
dimensional supergravity.

1.2.1 RR fields

In this book, we will actually only see the action for the bosonic fields. The super-
string NSNS fields are the same as those (1.1.9) of the bosonic string. The new

5 It might seem that a unitary gauge group is quite enough to accommodate the Standard Model’s SU(3)×
SU(2) × U(1). Even if these three factors unify at higher energies, the gauge groups that seem most
promising are G = SU(5) and SO(10). However, the particular representations that one needs for those
grand unified theories (GUT) are easier to obtain by starting from a group such as E8 or its subgroup E6.
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16 String theory and supergravity

bosonic fields are those in the RR sector. In this subsection, we focus on them before
writing the effective actions for IIA and IIB in the next subsections.

Completely antisymmetric tensors
The RR fields are all completely antisymmetric tensors with k-indices. Such tensors
are also called k-forms; we give here a minimal introduction to their properties,
leaving a deeper treatment to Sections 3.1 and 4.1.

The antisymmetrized derivative or exterior differential

(dA)M1...Mk
≡ k∂[M1CM2...Mk ] ≡ ∂M1CM2...Mk

− ∂M2CM1...Mk
± . . . , (1.2.1)

takes a (k − 1)-form to a k-form. The index antisymmetrizer [M1 . . . Mk] sums over
all permutations with a ±1 equal to the sign σ(i1 . . . ik ) of the permutation taking
1 . . . k to i1 . . . ik , and divides by a k!. So, for example, (dA)MN = ∂MCN − ∂NCM

is the Maxwell field-strength of CM . As another example, (1.1.15) can be written
as HMNP = (dB)MNP = 3∂[M BNP], with only three terms instead of six because
of antisymmetry of B. To avoid index proliferation, often we will write CM1...Mk

symbolically simply as Ck , and denote (1.2.1) by dCk . An important property of
(1.2.1) is

d d αk = 0 . (1.2.2)

Explicitly,

(ddα)M1...Mk
= k (k − 1)∂[M1∂M2αM3...Mk ] = 0 , (1.2.3)

because ∂[M1∂M2] = 0 on smooth functions. For an electromagnetic potential AM ,
this gives ∂[MFNP] = ∂[M∂N AP] = 0, one of the Maxwell equations. As another
example, from (1.1.15) it now follows ∂[M HNPQ] = 0, or in other words,

dH = 0 . (1.2.4)

The antisymmetrized, or wedge, product of two forms αk , α′
k′ is defined as

(α ∧ α′)M1...MkN1...Nk′ ≡
(k + k ′)!

k! k ′!
α[M1...Mk

α′N1...Nk′ ]
. (1.2.5)

This satisfies αk ∧ αk′ = (−1)kk
′
αk′ ∧ αk . In particular,

H ∧ H = 0 . (1.2.6)

We now also have the Leibniz identity:

d(αk ∧ αk′ ) = dαk ∧ αk′ + (−1)kαk ∧ dαk′ . (1.2.7)

In d = 10, the largest possible number of indices of a k-form is k = 10. Moreover,
a ten-form α10 is unique up to rescaling: it must be proportional to the Levi-Civita
tensor ε(0)

M1...M10
≡ σ(M1 . . . M10), the sign of the permutation taking M1 . . . M10

to 0 . . . 9. (The (0) label is used here because a more mathematically sophisticated
version of this tensor will enter the scene later.) Writing then α0...9 = f , we define∫

α10 ≡
∫

d10x f . (1.2.8)

A similar definition holds in any dimension d.
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Twisted field-strengths
RR forms usually appear in the action through a twisted field-strength6

Fk ≡ dCk−1 − H ∧ Ck−3 . (1.2.9)

For example, we will soon encounter FMNPQ = 4∂[MCNPQ] − 4H[MNPCQ]. (The
factors come from (1.2.1) and (1.2.5).) For k < 3, the second term is absent; for
example, F2 ≡ dC1. The Fk satisfy a Bianchi identity:

dFk = H ∧ Fk−2, (1.2.10)

as one sees using (1.2.2), (1.2.4), and (1.2.6). In a sense, this is more fundamental
than (1.2.9): sometimes we will modify (1.2.9), with (1.2.10) remaining true. Later in
this chapter, we will consider sources, which will violate (1.2.10) on some spacetime
defects. A form field H or Fk satisfying (1.2.10) with no source is often called a flux.
By an abuse of language, one sometimes calls by this name any form field, sourced
or not.

Gauge transformations
In electromagnetism, the field-strength FMN = ∂M AN − ∂N AM is invariant under
the gauge transformation AM → ∂Mλ0. We already observed after (1.1.15) that the
Kalb–Ramond field has a gauge transformation B → B+dλ̂1, which leaves invariant
its field-strength H = dB. For the RR fields, (1.2.9) are invariant under the gauge
transformations:

δCk = dλk−1 − H ∧ λk−3 . (1.2.11)

So, for example, under λ1 we have δC2 = dλ1, δC4 = −H ∧ λ1, while under λ3 we
have δC4 = dλ3, δC2 = 0.

In electromagnetism, λ0 need not be a function: it can be multivalued, as long as

eiqeλ0 (1.2.12)

is single-valued, where qe is the elementary electric charge. Multivalued λ0 are
called a large gauge transformation. They exist because the gauge group is compact,
which in turn comes from the requirement that the wave function should be single-
valued. This is relevant when there is a nontrivial loop in spacetime, either because
of an excluded region (as in the Aharanov–Bohm effect) or because spacetime has a
nontrivial topology. Consider for example an S1 with a periodic coordinate x ∼ x+L.
Single-valuedness of (1.2.12) requires λ0 → λ0 + 2πN /qe, N ∈ Z. The gauge
transformation AM → AM + ∂Mλ0 is more correctly rewritten as

AM → AM + ΛM , (1.2.13)

where ΛM is required to have
∫

dxΛx = 2πN /qe.
Suppose we want to give a constant expectation value to a component, Ax = A0

x .
This has no physical meaning if the direction x is noncompact, because we can gauge
it away with a gauge transformation λ = x A0

x . But if x ∼ x + L is a coordinate on a

6 Many authors use the symbol Fk for dCk−1 alone, and then put a tilde on our (1.2.9).
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18 String theory and supergravity

circle, then with a periodic λ we cannot gauge away A0
x any more; with a large gauge

transformation, (1.2.13) gives us the identification

A0
x � A0

x +
2π
Lqe

. (1.2.14)

In the limit L → ∞ we see again that all constant values can be gauged away. Similar
large generalizations of (1.2.11) exist; we will discuss them after we introduce the
analogue of the elementary electric charge for the Ck in Section 1.3.

1.2.2 IIA supergravity

We now come to the effective action for IIA string theory. As we anticipated, we will
only show the action for the bosonic fields.

Bosonic action of IIA supergravity
The leading bosonic action for type IIA superstrings is called type IIA supergravity.
It reads

SIIA = SkNS +
1

4κ2

[
−

∫
d10x

√
−g( |F2 |2 + |F4 |2) +

∫
B ∧ dC3 ∧ dC3

]
, (1.2.15)

where |Fk |2 ≡ 1
k! FM1...Mk

FM1...Mk , extending the definition in (1.1.15);

2κ2 = (2π)7l8
s ; (1.2.16)

and the kinetic NSNS term

SkNS =
1

2κ2

∫
d10x

√
−ge−2φ

(
R + 4∂μφ∂μφ −

1
2
|H |2

)
(1.2.17)

is the same Lagrangian as in (1.1.17), only now integrated in d = 10 dimensions
rather than 26. This term will also appear in all the supergravity effective actions we
will see later. The e−2φ prefactor signals its origin from g = 0 string diagrams, as
we remarked following (1.1.17). In a region where the dilaton is constant, the Planck
length is now

lP = g1/4
s ls . (1.2.18)

The string scattering amplitudes originally give a prefactor e−2φ for the rest of
(1.2.15) as well, but the action happens to look nicer if one rescales it away by
redefining the Ck .

RR terms
The first parenthesis in (1.2.15) can be regarded as the kinetic term for F2 = dC1,
and for F4 = dC3 − H ∧ C1 from (1.2.9). The last term is more peculiar in (1.2.15).
Unpacking the form notation (1.2.1), (1.2.5), and (1.2.8), one obtains:∫

B ∧ dC3 ∧ dC3 =
10!

2 · (3! )2

∫
d10xB[01∂2C345∂6C789] . (1.2.19)
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19 Supergravity

It does not involve the metric, and it contains a potential B2 without an exterior
derivative. For this reason, it is called the Chern–Simons term, after the Chern–
Simons action in three dimensions SCS =

∫
M3

CSA, where

CSA ≡ Tr

(
A ∧ dA +

2
3

A ∧ A ∧ A

)
(1.2.20)

is a three-form with the property dCSA = Tr(F ∧ F); the two-form F = dA + A ∧ A
is the nonabelian field-strength in the form notation of Section 1.2.1. Alternative
expressions for (1.2.19), such as −

∫
H ∧ C3 ∧ dC3, can be obtained by integration

by parts. Note that if we worked in d = 11 rather than d = 10, we could compute7

d(B ∧ dC3 ∧ dC3) = H ∧ dC3 ∧ dC3
(1.2.9),(1.2.6)
= H ∧ F4 ∧ F4 . (1.2.21)

Frame change
Superficially, the sign of the kinetic term for φ in (1.2.17) looks wrong: it is not
of the usual form “kinetic energy minus potential energy,” since φ̇2 appears with a
minus sign. (This issue of course was already present in (1.1.17).) But φ also appears
multiplying the Einstein–Hilbert term R; so its dynamics is less simple than it looks.
To make it more transparent, one can define an alternative metric

gE
MN ≡ e−φ/2gMN . (1.2.22)

This is called Einstein frame metric, because in terms of it (1.2.17) becomes

SE, kNS =
1

2κ2

∫
d10x

√
−gE

(
RE −

1
2
∂μφ∂

μφ − 1
2

e−φ |H |2
)

, (1.2.23)

with the Einstein–Hilbert term now appearing without the dilaton prefactor; indices
are also now contracted with the Einstein frame metric. Here the dilaton’s kinetic
term has the conventional sign. In most of the book, we will use the original string
frame metric gMN .

Supersymmetry
As we mentioned in Section 1.1.2, type II superstrings are symmetric under the 32
supercharges εa; so the fermionic completion of the supergravity action (1.2.15) will
enjoy such symmetry too. Theories with 32 supercharges are relatively rare: besides
IIB, an important example we will see later in this chapter is eleven-dimensional
supergravity, of which IIA is a dimensional reduction.8 This large amount of
supersymmetry has consequences on the structure of the ls and gs corrections; for
example, it fixes the two-derivative action completely.

This is a symmetry of the theory: not all supercharges will leave invariant a
particular field configuration. The generic field configuration breaks supersymmetry

7 Equation (1.2.21), together with a generalization of Stokes’s theorem that we will study in
Section 4.1.10, allows us to reinterpret the CS term as an integral over an eleven-dimensional space
of which the ten-dimensional one is a boundary.

8 Most other theories with 32 supercharges are further dimensional reductions of IIB or eleven-
dimensional supergravity, some of which we’ll see in Chapter 11; but there now exist examples which
are not thought to arise this way [32].
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20 String theory and supergravity

completely, just like the generic metric gMN has no Killing vectors. One of the topics
of interest for this book will be the study of how many supercharges leave invariant
given field configurations, or vice versa of which field configurations are invariant
under a certain number of supercharges.

String corrections
Corrections to the supergravity approximation first occur at the eight-derivative level.
The curvature terms read

SIIA,R4 =
1

2κ2
l6
sζ(3)

3 · 211

∫
d10x

√
−ge−2φ

(
tM1...M8 tN1...N8 +

1
8
εPQM1...M8ε

PQN1...N8

)
· RM1M2

N1N2 RM3M4
N3N4 RM5M6

N5N6 RM7M8
N7N8

(1.2.24)

at the leading order in gs. Here ζ is Riemann’s zeta function, and the tensor t is
defined by

tM1...M8 MM1M2 MM3M4 MM4M5 MM7M8 = 24TrM4 − 6(TrM2)2 . (1.2.25)

Just like for supergravity, (1.2.24) can be obtained either by computing string
amplitudes [33], or by computing the world-sheet beta functions beyond the leading
approximation [34]. At g = 1, or in other words e0·φ according to (1.1.12), there is a
similar term, where the combination t8t8 − εε/8 appears.

Even at this l8
s level, the complete structure of the action is not completely

established beyond (1.2.24). For example, one expects couplings to the form field
strengths. There is a famous coupling of the type

∫
B2R4, related to anomalies

[35, 36]. One can try to infer the remaining terms by using dualities [37] or
supersymmetry [38]. A complementary approach is via string amplitudes in the four-
field approximation (which gives a contribution to (1.2.24), when one linearizes it in
the metric fluctuation gMN ∼ ηMN + hMN ); with this restriction, one can go to
arbitrary precision in ls in the aforementioned Berkovits formalism [39].

Massive IIA
IIA supergravity has a deformation by a parameter F0 called Romans mass [40],
still preserving 32 supercharges.9 This theory was originally obtained by realizing a
Stückelberg mechanism, by which the Kalb–Ramond field B acquires a mass, at the
price of absorbing (or “eating”) the degrees of freedom of C1.

The original Stückelberg mechanism [43] is a variant of (and predates) the more
familiar Brout–Englert–Higgs (BEH) mechanism. In both cases, a vector field Aμ
acquires a mass by eating the degrees of freedom of a scalar a. In BEH, we gauge
a rotation in field space, leading to a covariant derivative schematically of the form
∂μa + Aμa. In the Stückelberg case, we instead introduce

Dμa ≡ ∂μa + mAμ , (1.2.26)

where m is a mass. This is invariant under a translation: a → a − mλ, if also Aμ →
Aμ + ∂μλ. This transformation can of course be used to set a = 0; in this sense, a

9 There is in fact also a second deformation of IIA with 32 supercharges [41]; this arises as a dimensional
reduction of eleven-dimensional supergravity where one identifies spacetime with itself up to an overall
rescaling. These are the only maximally supersymmetric deformations [42].

https://doi.org/10.1017/9781108635745.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108635745.004
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is “eaten” by Aμ. The covariant kinetic term DμaDμa, when expanded, is now seen
to contain a mass term m2 AμAμ for the vector field. Equation (1.2.26) appears often
in string compactifications with fluxes. We will comment further on the difference
between BEH and Stückelberg, and generalize both, in Section 4.2.2.

The variant of (1.2.26) we need in IIA is obtained by adding an index to both
participant fields, thus introducing

F2 ≡ dC1 + F0B. (1.2.27)

This modifies (1.2.9), which would have given F2 = dC1. Now C1 and B plays the
role of a and Aμ in (1.2.26), respectively. We have now used the symbol F0 for the
mass parameter. The reason for this name becomes apparent when we notice that

dF2 = HF0 . (1.2.28)

This is of the form (1.2.10), suggesting that F0 should be regarded as a new, non-
dynamical RR “field-strength” with zero indices. We will see later more cogent
reasons for this interpretation.

We also have to change F4 with respect to (1.2.9):

F4 = dC3 − H ∧ C1 +
1
2

F0B ∧ B ; (1.2.29)

(1.2.10) still holds. The gauge transformations (1.2.11) still leave these invariant, but
that of B does not, unless we modify it:

δB = dλ̂1 , δC1 = −F0λ̂1 , δC3 = −F0λ̂1 ∧ B . (1.2.30)

With these new definitions for the Fk , the IIA action is now modified as

SIIA = SkNS +
1

4κ2

[
−

∫
d10x

√
−g(F2

0 + |F2 |2 + |F4 |2) +
∫

mCS10

]
, (1.2.31)

where mCS10 is a ten-form that again has the formal property

d(mCS10) = H ∧ F4 ∧ F4 (1.2.32)

as in (1.2.21). Viewed in this way the modification with respect to (1.2.15) is
minimal, although an explicit expression is less nice:

mCS10 = B ∧
(
dC2

3 +
1
3

F0dC3 ∧ B2 +
1

20
F2

0 B4
)

, (1.2.33)

where Bk ≡ B ∧ . . . ∧ B.
We will see a more elegant way of understanding both (1.2.15) and (1.2.31) in

Section 10.1, at the cost of a slightly more sophisticated mathematical apparatus. On
that occasion, we will also see the supersymmetry transformations.

1.2.3 IIB supergravity

IIB supergravity is very similar to IIA [44–46]. The most important difference is
that it is a chiral theory: in Table 1.2, we see that the two ψa and the two λa

have the same chirality. Usually the presence of chiral spinors threatens an anomaly.
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22 String theory and supergravity

While there are no gauge fields, in a gravitational theory we have to worry about
potential anomalies for diffeomorphisms, which are just as lethal as their gauge
counterparts. The chiral ψa and λa indeed give a nonvanishing contribution to such
a diffeomorphism anomaly. Fortunately, however, the RR field C+MNPQ also gives
a contribution, which exactly cancels the fermionic ones [47], avoiding a potential
catastrophe in a nontrivial way.

C+MNPQ gives a contribution to an anomaly in spite of being bosonic because of
its self-duality property:

FM1...M5 =
1
5!
√
−g ε(0)

M1...M5
M6...M10 FM6...M10 , (1.2.34a)

where again ε(0) is the completely antisymmetric tensor defined later in (1.2.6). In
the condensed notation of the previous subsection, (1.2.34a) is written as

F5 = ∗F5 . (1.2.34b)

Just like in (1.2.9), we can take F5 = dC+4 − H ∧ C2. There are alternatives, such
as F ′

5 = dC+4 +
1
2 (B ∧ dC2 − H ∧ C2). Both F5 and F ′

5 satisfy the Bianchi identities
(1.2.10); one can bring one into the other by redefining C+4 (with no ill effect on the
action (1.2.36)).

Pseudoaction
While self-duality of F5 saves the theory, it also makes it hard to write down an
action. A self-duality property similar to (1.2.34) can be introduced for any k-form
potential ak with self-dual field-strength dak = ∗dak in d = 2(k + 1) dimensions.
The simplest example is for k = 0: a0 is then a scalar in d = 2 dimensions, and
self-duality implies

∂Ma0 ∂
Ma0 =

√
−g εMN

(0) ∂Ma0 ∂Na0 = 0 , (1.2.35)

so the usual Lagrangian density vanishes. More generally, this happens for any
even k, and in particular for our (1.2.34): the naive Lagrangian density |F5 |2 = 0.
There are strategies to cope with this issue; see [48, 49] for a recent proposal. In
the following, we will simply write a pseudoaction: all equations of motion can be
derived by varying it, except for the constraint (1.2.34). From now on, we will drop
the superscript and call C+4 → C4, for uniformity with the other potentials in both
type II theories.

A pseudoaction for IIB is then

SIIB = SkNS +
1

4κ2

[
−

∫
d10x

√
−g

(
|F1 |2 + |F3 |2 +

1
2
|F5 |2

)
+

∫
B ∧ dC2 ∧ dC4

]
,

(1.2.36)

where SkNS was given in (1.2.17). As in IIA, the last term is of Chern–Simons type,
and has the formal property that in eleven dimensions d(B∧dC2∧dC4) = H∧F3∧F5,
similar to (1.2.21). Alternative expressions can be obtained by integration by parts,
such as −

∫
H ∧ C2 ∧ dC4. The fermionic completion of (1.2.36) is supersymmetric

with 32 supercharges, just like IIA.
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The leading ls corrections are the same as in IIA, (1.2.24). At the g = 1 level,
the same combination t8t8 − εε/8 is present. Knowledge of the full eight-derivative
corrections is as incomplete as in IIA, but in this case dualities are more powerful
and determine the dependence on φ of the terms in (1.2.24) beyond the g = 0 and
g = 1 terms [50]. This is based on an important additional symmetry of IIB that is
already present at the level of supergravity, to which we now turn.

SL(2,R) symmetry
Given a 2 × 2 matrix with unit determinant,

m =

(
a b
c d

)
∈ SL(2,R) , (1.2.37)

we define the transformation law

τ → m · τ ≡ aτ + b
cτ + d

, gMN → |cτ + d | gMN

F5 → F5 ,
(

C2

B

)
→ m

(
C2

B

)
,

(1.2.38)

where

τ ≡ C0 + ie−φ (1.2.39)

is called the axiodilaton.
Equation (1.2.38) is a symmetry of the action (1.2.36). This type of nonlinear

action on τ is called a Möbius transformation; it will appear in several other contexts.
The string-frame metric transforms, but the Einstein frame metric (1.2.22) does not:

gE
MN → gE

MN . (1.2.40)

There is also an alternative expression for the transformation law of the two-form
potentials, in terms of

G3 ≡ dC2 − τH = dC2 − HC0 − ie−φH = F3 − ie−φH . (1.2.41)

From (1.2.38):

G3 → (a dC2 + bH) − aτ + b
cτ + d

(c dC2 + dH)
(1.2.37)
=

1
cτ + d

G3 . (1.2.42)

To see why this symmetry is remarkable, consider for example s =
(

0 1
−1 0

)
.

Starting from a configuration where C0 = 0, we see that

eφ → e−φ . (1.2.43)

The string coupling gs → 1/gs: strong coupling is mapped to weak coupling.
We hasten to add that this is a symmetry of the supergravity approximation; it

does not fully survive in string theory. One reason is the general expectation that
theories of quantum gravity should have no continuous symmetries, which we will
review in Chapter 12. A perhaps more concrete argument is that the fundamental

https://doi.org/10.1017/9781108635745.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108635745.004


24 String theory and supergravity

string couples to B; an arbitrary transformation in (1.2.38) transforms B → cC2 +

dB, and if this were a symmetry for arbitrary c and d there would have to exist a
continuum of string-like objects, coupling to any such linear combination. We will
see in Section 1.4.3 that generalizations of the fundamental string do exist, but only
a discrete infinity of them. This argument suggests that SL(2,R) gets discretized; we
will see this in Section 1.4.3.

1.2.4 Heterotic supergravity

Action
The bosonic part of the action for heterotic supergravity is

Shet = SkNS +
l2
s

8κ2

∫
M10

d10x
√
−g10e−2φTr|F2 | . (1.2.44)

(The positive sign is because Tr(T aTb) is negative-definite; we do not include i’s in
the gauge fields.) The term SkNS is the usual (1.2.17), but now

H ≡ dB −
l2
s

4
CSA , (1.2.45)

where CSA was given in (1.2.20). As in type II supergravity, there are ls corrections;
some of these will play a role in anomaly cancellation, to which we now turn.

Anomaly cancellation
Since we only supersymmetrized the right-movers, (1.2.44) only has half the
supersymmetry of the type II theories: 16 supercharges. Each line marked R in
Table 1.3 is related by supersymmetry to the line marked NS above it. As in IIB,
the spectrum is chiral: the gravitino ψMα and the gaugino χα have positive chirality,
while the λα̇ have negative chirality. Again, this creates the danger of an anomaly, this
time not only for diffeomorphisms but also for gauge transformations. Superficially,
this does not appear to vanish, but exactly for the two gauge groups (1.1.44) it takes
the factorized form

δΓ =

∫
ω1

2 ∧ Y8 . (1.2.46)

Here the symbol δ denotes variation under both diffeomorphisms and gauge
transformations; as usual in QFT, Γ is the quantum effective action (the action whose
tree-level amplitudes equal the full quantum amplitudes of S). Y8 is an eight-form,
quartic in curvature and in the Yang–Mills field-strength Fa. The two-form ω1

2 is
such that

dω1
2 = δ(CSg − CSA) , (1.2.47)

where now CSg is a three-form with the property (dCSg)MNPQ = 6RAB
[MN RPQ]BA,

similar to (1.2.20).
Equation (1.2.46) is nonzero, but it is not the full story; there are contributions

from the higher-derivative corrections. First of all, (1.2.45) should be modified to

H ≡ dB +
l2
s

4
(CSg − CSA) . (1.2.48)
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25 D-branes

CSg contains up to three derivatives, since its derivative contains by definition two
Riemann tensors. Now (1.2.47) implies δH � 0, unless we also make B transform

as δB = − l2s
4 ω

1
2. Another ls correction is the term∫

B ∧ Y8 ; (1.2.49)

its transformation now cancels the anomaly (1.2.46). This only works for the two
choices (1.1.44) of the gauge group, which allowed us to write (1.2.46) in the first
place. For more general gauge groups, δΓ does not factorize.

Exercise 1.2.1 Compute the equations of motion for the RR fluxes in IIA and IIB
by varying the actions (1.2.15), (1.2.31), and (1.2.36) with respect to the Cp.
Check that they are formally identical to the Bianchi identities (1.2.10), if we
extend them to k ≥ 6 by defining

F6 = ∗F4 , F7 = − ∗ F3 , F8 = − ∗ F2 , F9 = ∗F1 , F10 = ∗F0 ,
(1.2.50)

in the notation of (1.2.34b).
Exercise 1.2.2 Use (1.2.38) and (1.2.39) to show

eφ → |cτ + d |2eφ . (1.2.51)

1.3 D-branes

We saw that string theory has two expansion parameters: ls (or rather the dimension-
less ls/r , with r a curvature radius), and eφ, which when constant is also called gs.
In (1.1.21), we wrote the expansion as a power series, but we wondered whether this
really captures the whole dependence. Recall that a function is called (real) analytic
if it coincides with its Taylor series around every point. A famous nonanalytic
function is

f (g) = e−1/g2
. (1.3.1)

Both f and all its derivatives vanish at g = 0, so its Taylor series vanishes identically,
but f (g) � 0. In physics, we call an effect with such a dependence on the coupling
nonperturbative. In attempts at describing nonperturbative aspects of field theory,
two types of objects often come up: solitons, which are large and stable field
configurations, localized in space; and instantons, which occur in the Euclidean path
integral and are localized in time as well. In string theory, the most prominent objects
that play these roles are D-branes; this section is devoted to them.

1.3.1 Solitons and instantons

We begin with a quick reminder of solitons and instantons in field theory.

Solitons
In perturbative field theory, we often deal with quanta of small field perturbations
around the vacuum, which we call elementary particles. However, many field theories
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also contain other objects. A soliton is a “localized” solution of the equations of
motion that does not dissipate. This is in contrast with plane waves, which are
delocalized. Already in a linear system we find both types of solutions. For example,
for a free scalar φ in d = 2, the equation of motion (−∂2

t + ∂
2
x )φ = 0 is solved by

φ = φ0(t − x) for any φ0; this includes the plane wave solutions φ = ei(t−x) , but we
can also take φ0 to be any localized function, such as φ = (cosh(x − t))−2, which is
very small everywhere except for a narrow band of order one.

More notably, solitons exist in nonlinear systems also: the venerable Korteweg–De
Vries (KdV) equation

∂tφ + ∂
3
xφ + 6φ∂xφ = 0 , (1.3.2)

describing water waves in shallow channels, has many solitonic solutions, such as

φ =
c
2

(
cosh

(√
c

2
(x − ct)

))−2

(1.3.3)

for any c. Once again, this is localized in a narrow band at any t, and velocity c. There
also exist multisoliton solutions, where many waves similar to (1.3.3) coexist and
interact, just like particles. The dissipative and nonlinear effects from the second and
third term of (1.3.2) compete in exactly such a way that these waves do not dissipate.
(At a deeper level, this phenomenon is really due to the presence of infinitely many
conserved quantities for (1.3.2); see, for example, [51].)

Going back to relativistic field theories, many nonlinear theories also have such
stable solutions. Any d = 2 theory of a single scalar φ with a potential V (φ) with
two or more vacua φ± will have solitons: in this case, they are field configurations
where φ → φ± at x → ±∞. This is protected from dissipation by topological
reasons: one cannot take such a configuration to a vacuum without an infinite energy
expenditure. Unlike (1.3.3), these solitons can be at rest. Solitons also exist for d > 2,
and again they are usually stable for topological reasons. They are usually heavy
when the theory is weakly coupled. Nevertheless, just like the soliton waves of the
KdV equation, they behave almost as particles, and we should be able to compute
their dynamics, for example, their scattering amplitudes.

Monopoles
A magnetic monopole is a soliton around which the flux integral of the magnetic field
is nonzero. In R3, this means that∫

S2

daiBi = qm � 0 (1.3.4)

on a sphere S2. dai is an outward-directed vector whose norm da is the infinitesimal
area. Usually in electromagnetism qm = 0, because of the Maxwell equation ∂iBi =

0, the space part of ∂[μFνρ] = 0. So to introduce such objects, we should change
this equation to ∂iBi = Π

3
i=1δ

i (xi). A striking feature is their charge quantization.
Suppose we have a monopole localized at the origin. Consider a potential AN

μ , and
integrate it on the equator E of S2. Since Bi = εi jk∂j AN

k
, we can apply Stokes’s

theorem to the semisphere UN of S2 bounded by E:∮
E

dxi A
N
i =

∫
UN

daiBi . (1.3.5)
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However, we could do the same with the other portion of the sphere US; because

of orientation, there is a minus sign, so this time we would have
∮

E
dxi AN

i

?
=

−
∫
US

daiBi . Subtracting this from (1.3.5), we would find
∫
S2 daiBi

?
= 0, a con-

tradiction. The way out is to have a second potential AS
μ for the region US; then∮

E
dxi AS

i = −
∫
US

daiBi , and subtraction from (1.3.5) now just gives∫
S2

daiBi =

∮
E

dxi (AN − AS)i = qm . (1.3.6)

Two potentials are related by a gauge transformation, so (AN − AS)i = ∂iλ0; now
(1.3.6) tells us that λ0 is not periodic, but undergoes a shift qm after a turn around
E. Now, a gauge transformation acts on the wave function of a particle with electric
charge qe by ψ → e−iqeλ0ψ. This should be periodic, so e−iqeqm = 1, or in other
words,

1
2π

qeqm ∈ Z . (1.3.7)

This is called Dirac quantization, and will play many roles in this book.10

Monopole solutions can be found in the Yang–Mills–Higgs model

SYMH = −
∫

d4x Tr �� 1
2g2

YM

|F |2 + DμaDμa + λ(a2 − a2
0)2�	 , (1.3.8)

where F is an SU(2) gauge field, a an adjoint scalar, and Dμa ≡ ∂μa + [Aμ, a]
the gauge covariant derivative. For the ’t Hooft–Polyakov monopole solutions, qm is
defined as the magnetic charge under Tr(aF), and all fields are nonsingular. One
can prove the Bogomolnyi–Prasad–Sommerfield (BPS) bound for the mass of any
monopole solution:

mmon ≥ a0qm =
2πa0

gYM
. (1.3.9)

As anticipated, the mass is large at weak coupling. Conversely, at strong coupling
they may become light.

These effects are under better control in supersymmetric theories. A famous
example is theN = 2-supersymmetric version of Yang–Mills (super-YM), which is a
bit similar to (1.3.8). TheN = 1 super-YM involves the gauge field Aμ and a gaugino
λα. The N = 2 version involves two gauginos, and a scalar a (now complex), all in
the adjoint representation of the gauge group. The bosonic Lagrangian is11

SsYM =

∫
d4xTr

(
− 1

2g2 |F |
2 +

θ

64π2 ε
μνρσ
(0) FμνFρσ − Dμa†Dμa − 1

2
Tr([a, a†])2

)
.

(1.3.10)

10 Monopoles in electromagnetism have never been detected; but in quantum chromodynamics (QCD),
the theory of strong interactions, their condensation is believed to play an important role in
confinement. The mechanism is similar to the Meissner effect in superconductors, where the electric
field effectively acquires a mass and the magnetic field is zero almost everywhere, except in thin tubes.
The same should happen in QCD, but now with the electric field confined in thin tubes; since its flux
lines no longer disperse, this leads to a potential that grows with distance.

11 The θ term is a total derivative, but it does have physical effects on instantons and on monopoles.
In QCD, it is allowed but observed to be <10−9 for unknown reasons (the strong CP problem).
In supersymmetric theories, it appears naturally.
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28 String theory and supergravity

The anticommutators of the N = 2 algebra read

{QI , Q̄J } = Pμγ
μδIJ , {QI , QJ } = εIJ Z . (1.3.11)

The generator Z commutes with all other generators in the algebra, and as such it
is called central charge, just like c in (1.1.19). The BPS bound is now reinterpreted
as mmon ≥ |Z |. The representation theory of (1.3.11) shows that BPS states form a
special short representation; because of this, they are protected against time evolution
and against deformations of the theory, so they cannot just disappear as the coupling
is changed.

There is a low-energy effective description where we only keep the “abelian” part
of the fields, in the Cartan subalgebra. For G = SU(2), this is U(1), which we can
take along the σ3 generator of su(2); so we keep A3

μ and its supersymmetric partners.
The bosonic part of the effective action is now an Abelian version of (1.3.10), but
with both g = g(a3) and θ = θ(a3) depending on the vacuum expectation value for
the scalar a3. N = 2 supersymmetry determines this Seiberg–Witten (SW) effective
theory [52] exactly as τ(a3) = ∂3

a3
F , where the prepotential F is a holomorphic

function of a3, and we defined it:

τ ≡ 4πi

g2
YM

+
θ

2π
. (1.3.12)

In this solution, monopoles do become light at strong coupling, and there is a “dual”
description of the theory, of which they are the elementary photons, described by a
vector Ãμ.

In conclusion, solitons behave a lot like particles; at weak coupling, they are
collective excitations, but at strong coupling they may become the fundamental
degrees of freedom. So in quantum field theory it is not always clear which objects
are made of which others.

Instantons
In cases where exact results are available, such as in the N = 2 SW theory, the
effective action is not analytic: it does not coincide with its perturbative expansion.
The prepotential F depends on a3, but after reexpressing it in terms of the high-
energy gYM, we find a sum of contributions of the type

e−s/g2
YM , (1.3.13)

with s = 8π2k, for k an integer.
Such effects are ubiquitous: they appear even in quantum mechanics, in the

dependence on � of the energy spectrum, or of the tunnel effect probability (see,
for example, [53–55]). The easiest example is perhaps the energy of the vacuum
in a double-well potential Vdw = λ(x2 − x2

0)2. Near each vacuum x = ±x0, it is
approximately harmonic, Vdw ∼ 1

2ω
2(x ∓ x0)2, ω2 = 8x2

0λ; so we expect the lowest
energies to be ∼ �2ω, with a small splitting due to tunneling between the two. To find
this, one computes the probability 〈x0 |e−iHT /� | − x0〉, which becomes an integral over
histories: ∫

Dx(t)e−iS/� . (1.3.14)
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29 D-branes

After a Wick rotation T → −iTE, the integral is dominated by the Euclidean-time
history x(tE) that solves the Euclidean equations of motion, which are obtained from
the ordinary ones by an overall sign of the potential, VE = −V . This classical solution
xcl needs to asymptote to ±x0 for tE → ±∞; it is called an instanton because most of
its action comes from a particular time t0, when x switches from one vacuum to the
other. Evaluating the integrand on this solution gives already a good approximation
to the integral; a better one is found by performing the integral over fluctuations
(x − xcl)(t) around it. For the double-well Vdw, both these steps can be carried out
exactly, and the energy of the lowest eigenstate is

E0 ∼
�

2
ω − �ω

√
6s
π�

e−s/� , s =
2
3
ωx2

0 . (1.3.15)

The splitting of the levels contains the nonanalytic e−s/�. The coefficient s = S(xcl)
is the action evaluated on the classical solution; the coefficient multiplying it comes
from the integral over small fluctuations.

In field theory, one again Wick-rotates the path integral, looking for classical
Euclidean solutions φcl with finite action s = S(φcl), so that their contribution
e−s � 0. So a field theory instanton should be localized in space and time. A famous
example occurs for YM theories in d = 4, where instantons are solutions of the
self-duality equation

Fμν =
1
2
εμν

ρσFρσ , (1.3.16)

which in the notation of (1.2.34b) reads

F = ∗F . (1.3.17)

Computing these effects exactly is more challenging, but sometimes it can be done;
again, supersymmetry helps (see, for example, [56] for a review). While the SW
N = 2 solution was found with other methods, one can in fact reproduce it exactly
by counting gauge instantons [57].

World-sheet instantons in string theory
In string theory, we have two expansion parameters, ls and gs = eφ. For ls , we
can apply the preceding discussion to the two-dimensional QFT on the world-sheet.
An instanton for this model is a finite-action solution to the Euclidean equations
of motion. Equation (1.1.4) is not directly the world-sheet area, but it is classically
equivalent to it, so we can look for maps x(σ) : Σ → M10, where the area A(Σ) is
minimized. In flat space, this would give the degenerate situation where Σ is shrunk
to a point. But for spacetimes with nontrivial topology, such as compactifications,
the internal space may contain a two-dimensional subspace S2 that cannot be
continuously shrunk to a point; so its minimal area A(Σ) � 0, and this embedding is
a world-sheet instanton, which, recalling (1.1.4) and (1.1.5), contributes

e−A(Σ)/4πl2s (1.3.18)

to the path integral. Remarkably, these effects can sometimes be computed exactly,
as we will see in Section 7.1.

Effects that are nonperturbative in gs are a different matter altogether. The world-
sheet approach is intrinsically perturbative in gs; so we need a new ingredient.
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1.3.2 Open string definition

A D-brane is an additional extended object in string theory; so far we have not
encountered it because we limited ourselves to a perturbative approach.

In general relativity, no solitons exist, if defined as fully regular solutions with
localized energy and flat asymptotics ([58]; for a recent account, see, for example,
[59, IV.8]). In a general gravitational theory, we might be tempted to say that black
holes are the analogue of solitons: they have localized energy, and they are stable.
They do have a singularity, unlike the solitons we have studied in the previous
section. It is natural to think, however, that this singularity signals the breakdown
of general relativity, and that in a full theory of quantum gravity it disappears.

Besides black holes, string theory has solutions whose energy is localized along a
subspace, and not just a point in space; so they are called p-branes, a generalization
of the word “membrane,” where p denotes the number of space dimensions they
span. As solutions of the supergravity equations, they have a singularity at their core;
but string theory does provide an alternative, smooth understanding, in terms of open
strings.

An open string is one whose time slice is an interval rather than a circle. It
requires choosing boundary conditions for the world-sheet fields; Dirichlet boundary
conditions for some of the xM (σ) correspond to open strings that end on a subspace
of spacetime, which is accordingly called a Dirichlet-brane, or more commonly a
D-brane.

These D-branes are the fundamental definition of the p-brane gravity solutions
[60]. Consider, for example, a D-brane in flat space. We have both closed and open
strings, interacting with one another, both described by a world-sheet model with a
flat background metric gMN = ηMN . Suppose we now perform the path integral over
the open string degrees of freedom – in QFT jargon, we “integrate them out.” As in
QFT, the action for the remaining degrees of freedom, those of closed strings, is now
modified: the background metric is distorted to a different metric gMN . So we obtain
an effective description, with only closed strings in a curved background metric,
which is nothing but the p-brane metric, or in other words the “back-reaction” of the
D-brane on spacetime. Because of the difficulties with the world-sheet description
of RR fields that we mentioned at the end of Section 1.1.2, this identification is a bit
difficult to demonstrate explicitly, but several indirect arguments point toward it.

We will now review the definition of D-branes as loci where open strings end, and
then their gravitational description.

To describe an open string, we take σ1 ∈ [0, π], rather than a periodic coordinate
as in Section 1.1. When we vary the action, we now have to pay attention to boundary
terms. For example, let us consider flat space gMN = ηMN and hαβ = ηαβ, and focus
on a single coordinate x. Then the variation gives

1
2
δ

∫
Σ

d2σ∂αx∂αx =
∫

d2σ∂αx∂αδx =
∫

d2σ
(
∂α (δx∂αx) − δx∂2x

)
=

∫
∂Σ

dσ0δx∂σ1 x −
∫
Σ

d2σδx∂2x .
(1.3.19)

The second term gives us the free equation of motion ∂2x = 0, familiar from closed
strings; the first is new. To set it to zero, we can either set ∂σ1 x = 0 or δx = 0. The first
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31 D-branes

is called Neumann (N) boundary condition; the second sets to zero the variation
of this world-sheet scalar at the boundary, and is called Dirichlet (D) boundary
condition.

All this was for a single x; still remaining in flat space, we can select N or D
boundary conditions for each of the xM independently. Each xM for which we are
choosing, a D boundary condition is fixed, xM = xM

0 , at the boundary ∂Σ, or in other
words at the endpoints of the open string. So if we choose N boundary conditions for
p + 1 fields xM (including time), and D for the remaining 9 − p, we have a theory
of open strings that end on a p + 1-dimensional object; by definition, this is called a
Dp-brane.

Clearly, the presence of a Dp breaks some of the symmetries of the background;
in flat space, a flat Dp breaks the ten-dimensional Poincaré group ISO(1, 9) to a
ISO(1, p + 1) × SO(9 − p). For applications to compactifications, we will want
Dp-branes that are completely extended along R4 and localized along some of the
internal dimensions. This preserves the four-dimensional Poincaré group.

The analysis in (1.3.19) is enough for D-branes in bosonic string theory; for type II
superstrings, we also need to give boundary conditions for world-sheet spinors. The
procedure (1.3.19) applied to the spinorial action (1.1.30) shows that at the boundary
∂Σ the combination ψ+δψ+ −ψ−δψ− should vanish; this can be arranged by having

(ψ+ = ±ψ−) |∂Σ . (1.3.20)

Both for the xM and ψM , the boundary conditions now relate left- and right-
movers, and the open string spectrum has only one set of oscillators. Just like in
the closed string sector, massless states come from the fermionic oscillators; the sign
in (1.3.20) gives two different sectors, which again we call NS and R. After GSO
projection, we have the massless spectrum

bM
−1/2 |0〉NS , 8V ; |0, α〉R , 8S . (1.3.21)

If we are considering N boundary conditions, the endpoints are not fixed to lie
anywhere, and we have a D9-brane; in this case (1.3.21) is interpreted as a vector
field aM and a gaugino λα. If we have D directions i = p + 1, . . . , 9, then the
components bi−1/2 |0〉NS are transverse to the Dp-brane, and behave as scalars under
ISO(1, p + 1); the parallel components ba

−1/2 |0〉NS, a = 0, . . . , p still represent a
vector field. As for the |0, α〉R, they represent a spinor under both the parallel and
transverse rotations. So in total we have

aa , xi , λα . (1.3.22)

Calling the scalars xi might seem confusing, given that we also called xM the world-
sheet scalars. But we will see shortly that the scalars xi on a D-brane parameterize
its transverse fluctuations, and thus give an embedding of Dp into spacetime.

Just as closed (bosonic) strings can couple to condensates of their massless fields
(1.1.9), we can couple open strings to condensates of (1.3.22). For example, the
coupling to aa reads ∫

∂Σ

dσ0aa∂0xa ; (1.3.23)

recalling (1.1.3), this means that the endpoints behave as charged particles
under a. Rewriting this as −

∫
Σ

d2σ∂1(aa∂0xa) and adding the total derivative
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0=
∫

d2σ∂0(aa∂1xa), this becomes
∫
Σ

d2σ fab∂0xa∂1xb , where the two-form
f = da is the field-strength of the vector a. This has the same form as in (1.1.10);
in the parallel directions, the two can be collected together, and the combination
(B + 2πl2

s f )ab appears.

1.3.3 Effective action

So far, we considered a Dp-brane extended along a flat subspace Rp+1 ⊂ R10. We
can try to generalize this to arbitrary subspaces in arbitrary background metrics, but
we still need to impose conformal invariance. For closed strings, this led to the beta
functions (1.1.14), which we reinterpreted as spacetime equations of motion for the
effective action (1.1.17); for open strings, it leads to equations of motion for the
brane, which again come from an effective action SDp. The fields appearing in this
action are those of the closed string spectrum in Tables 1.1 and 1.2, plus the open
string fields (1.3.22). Once again, we only give here the bosonic part:

SDp = τDp

⎡⎢⎢⎢⎢⎣−
∫

dp+1σe−φ
√
−det(g |Dp + F ) ±

∑
k

(−1)k
1
k!

∫
Dp

Cp+1−2k ∧ F k
⎤⎥⎥⎥⎥⎦

(1.3.24)

where

τDp =
1

(2π)plp+1
s

. (1.3.25)

The coordinates σa, a = 0, . . . , p parameterize the world-volume12 Dp. The
restriction or pull-back operation |Dp consists in contracting each index M with
∂axM , as in (1.1.3) and (1.1.10); the xM (σ0, . . . , σp) gives the embedding of Dp
into spacetime. In the second term of (1.3.24), the spacetime forms are integrated on
the Dp world-volume by first pulling them back; so, for example, we should really
write

∫
Dp

Cp ≡
∫

Dp
Cp |Dp. The sign ± is related to the “orientation” on Dp, namely

to the order of the coordinates in the world-volume measure; we will see this in more
detail later, and fix this convention more precisely in Chapter 10.

Recall that f k = f ∧ . . . ∧ f ; we also defined

Fab ≡ (2πl2
s f + B |Dp)ab = 2πl2

s fab + BMN∂axM∂bxN , (1.3.26)

in line with the remark that follows (1.3.23). The gauge transformation for B no
longer leaves the action invariant, unless it also acts on a:

B → B + dλ̂1 , a → a − 2πl2
s λ̂1 . (1.3.27)

For open strings, (1.1.12) has to be modified as g2g−2+#b
s , where #b is the number

of boundaries added to Σ; the prefactor e−φ in (1.3.29) indicates then that this action
originates from a sphere to which we add a single boundary, which is topologically a
disk. This is the simplest open string diagram: an open string that is created and later
disappears. The term containing Cp does not contain this prefactor because of the

12 We will call “world-volume” the subspace swept in spacetime by a D-brane, and keep using “world-
sheet” for a fundamental string.
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customary RR rescaling noted following (1.2.17). For constant eφ = gs effectively
the tension of a D-brane is not really τDp, but rather

TDp =
τDp

gs
. (1.3.28)

So at small gs, D-branes are heavy, similar to the bound on monopole mass in (1.3.9)
in terms of gYM.

The DBI term
If we set to zero all fields except gMN , (1.3.24) reduces to

− τDp

∫
dp+1σ e−φ

√
− det gMN∂axM∂bxN . (1.3.29)

This is the natural generalization of the particle action (1.1.2) to an extended object;
it measures the volume of the (p+1)-dimensional object Dp in spacetime, relative to
the background metric gMN . In the flat background metric gMN = ηMN , a subspace
that is itself flat extremizes (1.3.29); a curved Dp will tend to relax to such a flat
subspace, or shrink to a point. Without loss of generality, we can locally take the first
p+ 1 coordinates of spacetime xM to coincide with the σa; then the remaining 9− p
can be identified with the transverse scalars xi in (1.3.22). If we choose the latter so
that gaj = 0, then

(g |Dp)ab = gab + gi j∂axi∂bx j . (1.3.30)

For small xi , (1.3.29) contains then the usual kinetic term, and terms with more than
two derivatives.

The full first term
√
−det(g |Dp + F ) is called (Dirac–)Born–Infeld (DBI) because

it is reminiscent of early proposals to improve the short-distance behavior of the elec-
tromagnetic field, inspired by the resemblance to the relativistic contraction factor
γ−1 =

√
1 − v2. While this combination might seem odd, we will see that it has many

natural properties (including a duality with Pythagoras’ theorem in Section 1.4.2).
We can expand it for small open string fields. Recall that log detM =Tr log(M); then
for a matrix M ∼ 1 + m near the identity, m � 1:

det(1 + m) = exp [Tr log(1 + m)] = exp

[
Tr m − 1

2
Tr(m2) + . . .

]
(1.3.31)

= 1 + Tr m +
1
2

((Tr m)2 − Tr(m2)) + . . . .

Using this and (1.3.30), for B = 0:√
−det(g |Dp + F ) ∼

√
− det

ab
gab

(
1 +

1
2
gi j∂axi∂ax j +

1
2
|2πl2

s f |2
)
+ . . . , (1.3.32)

where we kept only terms with two derivatives, and indices are raised and contracted
with gab. Taking into account the prefactors in (1.3.24), the YM coupling is given by

g2
YM = (2π)p−2lp−3

s gs . (1.3.33)

In particular, it is dimensionless for p = 3, as expected.
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The Wess–Zumino term
We now turn to a discussion of the term involving Cp+1−2k in (1.3.24). This is
variously called Chern–Simons or Wess–Zumino (WZ) term, inspired by the names
of two famous actions that don’t involve the metric. When F = 0, the integral on Dp
is defined as in (1.2.8), after the pull-back operation described following (1.3.24).
Explicitly, ∫

Dp

Cp+1 =

∫
CM0...Mp ∂0xM0 . . . ∂pxMp . (1.3.34)

For k = 1 this has the form (1.1.3); for k = 2, it looks like the coupling (1.1.10) of
the fundamental string to B. So the coefficient of (1.3.34) is a charge density; we see
from (1.3.24) that it equals the brane tension TDp.

Recall from Section 1.1.2 that the Cp+1 exist with p = even in IIA, and p = odd in
IIB; so there are

Dp-branes: p =

{
even IIA ,
odd IIB . (1.3.35)

In IIA, the smallest object is a point-like soliton in IIA, the D0-brane. In IIB we also
have the possibility of a D(−1)-brane or D-instanton, with a D boundary condition
for the time coordinate as well, so that it is localized also in time. In the context
of compactifications, there are additional brane instanton that wrap the internal
directions and are completely localized in the noncompact directions.

A subtlety mentioned following (1.3.24) is that the overall sign of (1.3.34) can
change if we embed the world-volume differently: if we flip the sign of one of the σa,

xM (σ0, σ1, . . . , σp) → xM (σ0, −σ1, . . . , σp) , (1.3.36)

the image of the embedding remains the same, but (1.3.34) changes sign, because
∂σ1 xM appears only a single time in it. A similar sign change happens upon
exchanging two coordinates. Since the charge density changes sign, we call this an
anti-Dp-brane. The difference between a brane and antibrane is conventional.

Effect of world-volume flux
When F � 0, a Dp-brane also couples to RR fields Ck with k < p. For example, the
WZ term for a D2-brane becomes∫

D2
(C3 − F ∧ C1) . (1.3.37)

In (1.3.34), C1 would couple to a D0; so we interpret the second term in (1.3.37) as
the presence of a distribution of D0-branes on the D2. In other words, we have a D2
that also has D0 charge, or a D2/D0 bound state.

A final subtlety about the WZ term regards the Romans mass F0 [61, 62]. Since
this flux has no potential, it might seem that no brane couples to it. In fact, for F0 � 0
the WZ term in (1.3.24) needs to be modified to∫

Dp
wzp+1 , dwzp+1 =

∑ 1
k!

(−1)kFp+2−2k ∧ F k . (1.3.38)

For F0 = 0, wzp+1 =
∑

k
1
k! (−1)kCp+1−2k ∧ F k as in (1.3.24); for F0 � 0, we can use∑

k Fp+2−2kcsk , where csk generalizes the Chern–Simons form (1.2.20). For example,
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for p = 0, taking (1.3.24) literally would give a term
∫

C1 − C−1 ∧ F ; the correct
coupling can be obtained by formally integrating the second term by part:∫

D0
(C1 − F0a) . (1.3.39)

Magnetic dual potentials
In (1.3.34), RR potentials Cp appear for any p, while in Section 1.2 we only saw
p ≤ 4. We need to extend the definition to higher p by introducing the magnetic dual
potentials, defined through

dCp − H ∧ Cp−2 ≡ Fp+1 ≡ (−1)p(p−1)/2 ∗ F9−p (p > 4) (1.3.40)

in the notation of (1.2.34b). These new Cp, p ≥ 5 are the higher-dimensional
analogue of the magnetic dual gauge fields we mentioned for the SW solution that
follows (1.3.12). For example, a D6-brane couples to C7, which when H = 0 is
defined by dC7 = F8, or more explicitly

FM1...M8 = −
√
−gε(0)

M1...M8
M9M10∂M9CM10 . (1.3.41)

In Exercise 1.2.1, it was noted that the RR equations of motion look like an
extension of the Bianchi identities in terms of the magnetic duals. This allows to
rewrite the action by swapping one or more of the original potentials with their
magnetic duals. In presence of a Dp with p ≥ 4, it is convenient to use this
reformulation to vary with respect to Cp+1. The combined action, (1.3.24) plus the
supergravity action in (1.2.31) or (1.2.36), can be rewritten as an integral over ten
dimensions by using delta functions. In the language of forms, recalling our notation
xi for the directions transverse to the Dp, we can introduce a form

δDp ≡ δ(x1) . . . δ(x9−p)dx1 ∧ . . . dx9−p . (1.3.42)

After the variation, we then obtain (for F = 0)

dFp − H ∧ Fp−2 = ∓2κ2τD(8−p) ∧ δD(8−p) ; (1.3.43)

the source term on the right-hand side is the effect of D-branes on the RR field
strengths. A similar source term appears in the equations of motion for the other
closed string fields.

1.3.4 Flux quantization

The coupling (1.3.34) is the natural generalization of (1.1.3) to extended objects. In
this sense, a Dp-brane is the elementary charge for the RR field Cp+1, much as the
electron for the electric field. The generalization of the large gauge transformation
(1.2.13) is

Cp+1 → Cp+1 + Λp+1 ,
τDp

2π

∫
Sp+1

Λp+1 ∈ Z (1.3.44)

for any subspace Sp+1. This includes our old “small” RR gauge transformations
(1.2.11): Λp+1 = dλp is a total derivative, and the integral (1.3.44) is zero.

The non-single-valuedness of a gauge transformation λ0 was used in the Dirac
quantization argument (1.3.7). This suggests a generalization of that result to RR
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fields. Surround a Dp-brane with a sphere S8−p, consider an “equator” E on it (itself
a sphere S7−p), and the two semispheres UN, US into which it divides S8−p. The
integral τD(6−p)

∫
UN

(dC)8−p can be rewritten using an analogue of Stokes’s theorem
(which we will formalize in Section 4.1.10) as

τD(6−p)

∫
E

C7−p . (1.3.45)

Repeating this over US yields a competing result for (1.3.45); the two results in
general disagree, their difference being exactly the integral of F8−p over all of S8−p.
But there is no inconsistency if we use two different Cp+1 on UN and US, differing by
a large gauge transformation (1.3.44). This leads to the condition

τD(6−p)

∫
Sk

(dC)8−p = 2πn , (1.3.46)

where n ∈ Z. Recalling (1.3.25),

1
(2πls)k−1

∫
Sk

(dC)k ∈ Z . (1.3.47)

Although for concreteness we presented our argument with spheres, (1.3.47) holds
for any k-dimensional subspace Sk . Often such a subspace can be continuously
deformed to a point, and in that case the integral in (1.3.47) just vanishes. The
integral can be nonzero in two types of situations:

• If Sk surrounds a brane, we cannot continuously deform it to zero without crossing
it. The integral

∫
F8−p can be taken as the definition of the charge of a Dp; one

could use this to rederive (1.3.25). In this case, flux quantization can also be derived
by suitably integrating (1.3.43).

• For compactifications, some Sk in the internal space cannot be continuously
deformed to a point for topological reasons (Section 4.1.10). In this case, (1.3.47)
can be nonzero even if there are no D-branes.

The logic behind (1.3.47) can also be applied to the magnetic dual potentials
(1.3.40); one concludes that (1.3.47) is valid for all k ≤ 10, and not just for the
Fk with k ≤ 5 that appear in the supergravity actions. Notice that the ∗ in (1.3.40)
contains the metric, as we see explicitly in (1.3.41). This seems to create a paradox:
if we impose flux quantization both for F3 and for its dual ∗F3 (say), it seems we
are imposing some quantization conditions on the metric itself. In practice, however,
there are always some noncompact directions in spacetime, and only one of the two
flux integrals makes sense. For example, for M10 = R

4 × M6, if we impose flux
quantization for F3, the one for ∗F3 would involve an integral over R4, which would
diverge.

The case k = 0 in (1.3.47) deserves a separate discussion. There is no potential
C−1, and S0 = {x2

1 = 1} is just the union of two points. But integrating (1.3.43) for
p = 0 on a segment crossing a D8, we still obtain

2πlsΔF0 = ND8 ∈ Z . (1.3.48)
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37 D-branes

Strictly speaking, in this case we only quantized the jumps of F0 rather than F0 itself.
It would now be possible to entertain the notion that 2πlsF0 = n0+θ, with n0 ∈ Z and
θ ∈ [0, 1), fixed for any background. This looks unlikely; we will see that T-duality
relates the RR fluxes to one another, and if θ � 0 were allowed it would eventually
violate one of the (1.3.47) for k > 0. So we will take

2πlsF0 ∈ Z . (1.3.49)

Our discussion can also be easily applied to B, since its coupling to the fundamen-
tal string is identical to the one of C1 to the D1. Looking at (1.3.44) and (1.3.47), we
conclude

B → B + Λ̃2 ,
1

(2πls)2

∫
S2
Λ̃2 ∈ Z ; (1.3.50a)

1
(2πls)2

∫
H ∈ Z . (1.3.50b)

1.3.5 Supersymmetry

D-branes break some of the bosonic symmetries of a background; perhaps more
importantly, D-branes also partially break some of its supersymmetry. Recall that
both type II string theories are invariant under 32 supercharges, whose infinitesimal
parameters are two spacetime fermions εa. A Dp extended along a flat Rp+1 ⊂ R10

is invariant only if the two εa are related by

ε1 = Γ‖ε
2 , (1.3.51)

where

Γ‖ =
1

p!
√
−det(g |Dp)

ε
a0...ap

(0) Γa0...ap , Γa ≡ ΓM∂axM (F = 0) . (1.3.52)

The flat space background is invariant under all 32 supercharges. If we have a
Dp-brane extended along a Rp+1 ⊂ R10 subspace, without loss of generality we
can take it to be {xp+1 = . . . = x9 = 0}; (1.3.52) then becomes

Γ‖ = Γ0 . . . Γp . (1.3.53)

Equation (1.3.51) gives a relation among the two εa: only ε1 is now independent,
and thus we are left with 16 supercharges. This preserved supersymmetry makes
these flat D-branes the analogue of the field-theory BPS states in Section 1.3.1. In
particular, they are stable against time evolution and deformations of the theory.13

This is the reason they are useful: if we make the string coupling gs large, we lose
perturbative control, but we know that D-branes have to remain in the spectrum.
Since their tension (1.3.28) is the inverse of the string coupling, they become light
at strong coupling and might become new fundamental objects, similar to the SW
solution of N = 2-supersymmetric Yang–Mills (Section 1.3.1).

We saw in Section 1.1.2 that the εa have opposite chiralities in IIA, and equal
in IIB, and that multiplication by a single ΓM changes chirality. It follows that

13 A D-brane with a more general shape is not guaranteed to preserve supersymmetry, and hence to be
stable under time evolution. In Section 9.2, we will consider this further, and also generalize (1.3.52)
to F � 0.
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(1.3.51) can only be solved for p = even in IIA, and for p = odd in IIB; this
confirms (1.3.35).14

The origin of the constraint (1.3.51) is roughly the following. The fermionic
completion of the effective action (1.3.24) includes two world-sheet fermions θa.
Closed string supersymmetry acts on these as a spinorial translation:

δθa = εa . (1.3.54)

Imposing supersymmetry would then set both εa = 0. But there is also a gauge
equivalence among the θa, called κ-symmetry, acting as

δθ1 = Γ‖κ , δθ2 = κ . (1.3.55)

Imposing invariance under a combined supersymmetry and κ-symmetry gives
(1.3.51).

1.3.6 Multiple D-branes

D-brane stacks and nonabelian gauge groups
To each endpoint of an open string, it is possible to add an extra discrete quantum
number I = 1, . . . , N , called the Chan–Paton (CP) label. It can be interpreted as the
presence of N > 1 superimposed D-branes, or in other words a stack of N D-branes.

Let us see why. Since open strings have two endpoints, the states (1.3.21) and
the fields (1.3.22) acquire two extra labels I J, and so they are now promoted to
Hermitian matrices. Now a becomes a nonabelian U(N ) gauge field, and x a scalar
in the adjoint representation. In the action (1.3.24), we should turn all fields into
matrices with an overall trace, but there are potential ordering ambiguities.

The situation is much clearer for the two-derivative approximation (1.3.32), whose
nonabelian extension is dictated by supersymmetry. We know from (1.3.51) that a
brane extended along a flat Rp+1 ⊂ R10 subspace preserves 16 supercharges; we
expect its effective action to have this invariance. This is the maximum number of
supercharges for a QFT model (not including gravity), and models with this property
are quite constrained. For example, for p = 9, when we have a D9 extended along all
of spacetime, there are no scalars xi , and in (1.3.32) only the | f |2 term remains. Its
nonabelian version is the YM Lagrangian density Tr| f |2; supersymmetry involves
also the gaugino λα of (1.3.22), and the requirement of 16 supercharges fixes the
action uniquely.

For lower p, some components of the gauge field now become xi , because of
their common origin in (1.3.57). The resulting supersymmetric YM theory with 16
supercharges is again uniquely fixed: it is the dimensional reduction of the action
for p = 9 along the directions to the Dp. The components of the gauge field along
the transverse directions become the transverse scalars xi; the world-volume field
strengths then become

Fai = Daxi = ∂axi + [Aa, xi] , Fi j = [xi , x j] . (1.3.56)

14 There also exist non-BPS branes that violate (1.3.35) and are of course not described by the effective
action (1.3.24). These branes are unstable, but they become stable after some quotients, including the
orientifolds we will introduce in Section 1.4.4 [63].
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In particular, the YM term generates a potential for the scalars

V ∝ Tr
(
[xi , x j][xi , x j]

)
, (1.3.57)

which vanishes in the Abelian case. The xi are diagonalizable because Hermitian; the
vacua of (1.3.57) are given by configurations where [xi , x j] = 0, which means that
the xi are simultaneously diagonalizable. In the generic vacuum where they are all
different, the BEH mechanism gives a mass to all fields except the diagonal ones; the
action of these massless modes is again the Abelian (1.3.32). The D-brane positions
are the eigenvalues λI

i . This picture motivates the proposed interpretation of the CP
label as N superimposed D-branes.

An additional check of this conclusion is that the off-diagonal modes receive a
mass that is proportional to the

∑
i (λ

I −λJ )2
i ; these can be interpreted as the lengths

of the strings going from the Ith to the Jth D-brane. Another is supersymmetry:
the condition for (1.3.51) is the same for parallel Dp, since ∂axM is insensitive to
translations xM → xM + xM

0 . So having parallel Dp still preserves 16 supercharges,
which is what we assumed for the nonabelian super-YM theory in presence of the
CP label.

Brane–antibrane system
Recall from (1.3.36) that parity in one of the embedding coordinates changes the
WZ coupling (1.3.34) by a sign; we called this an anti-Dp. Now in the condition for
supersymmetry (1.3.51) the matrix Γ‖ changes sign, too. If we have a Dp and an
anti-Dp together, we have to solve

ε1 = Γ‖ε
2 , ε1 = −Γ‖ε2, (1.3.58)

which is impossible. So a brane–antibrane system breaks supersymmetry.
Moreover, an analysis of the open string modes reveals the presence of a tachyon.

It has been shown [64, 65] that in fact this tachyon has a nontrivial potential, with
a stable vacuum, which represents the closed-string vacuum without any branes; in
other words, the tachyon can condense (get a nonzero expectation value) and become
stable. The spacetime interpretation is that the Dp–anti-Dp pair annihilates, much as
a particle–antiparticle pair. The story becomes even more interesting when one of
the two has a nontrivial flux of the world-volume field-strength f ; in this case, after
the annihilation we are left with a lower-dimensional brane instead of the vacuum.
This motivates the K-theory interpretation of D-branes [66], also suggested by the
higher-derivative corrections to (1.3.24) [67]. (This will reappear in Section 9.2.3.)

1.3.7 Gravity solutions

We anticipated at the beginning of this section that a D-brane back-reacts on closed
string fields, distorting the flat space metric to a so-called p-brane solution. These
can be found by solving the closed string equations of motion with the symmetries
we expect the brane to preserve, namely ISO(p+1)×SO(d−p) (parallel Poincaré and
transverse rotations), and 16 supercharges. Here we give the result; we will check in
later chapters that they are supersymmetric solutions, in various ways.

The solutions for N superimposed Dp-branes, extended along a flat {xp+1 = . . . =

x9 = 0} = Rp+1 ⊂ R10, is
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ds2
Dp = h−1/2ds2

‖ + h1/2ds2
⊥ , eφ = gsh

3−p
4 , (1.3.59a)

Fi1...i8−p =
f8−p

r9−p xiε⊥ii1...i8−p , f8−p ≡
(2πls)7−pN

v8−p
. (1.3.59b)

ds2
‖ = −(dx0)2+

∑p
a=1(dxa)2, and ds2

⊥ =
∑9

i=p+1(dxi)2 are the metrics respectively of
the 1 + p parallel and 9 − p transverse dimensions prior to introducing the D-branes;
recall that a and i are our names in this section for the parallel and transverse indices
respectively. ε⊥ is the completely antisymmetric tensor in the transverse directions
(such that ε⊥p+1...9 = 1); vd ≡ Vol(Sd) = 2 π(d+1)/2

Γ((d+1)/2) is the volume of the unit-radius

sphere Sd; in form notation, as we will see in Exercise 4.1.9, F = fpvolSd , the
volume form of Sd .

h is a function of the radial direction r = (
∑9

i=p+1(xi)2)1/2, which satisfies

9∑
i=p+1

∂2
i h = 0 (1.3.60)

away from r = 0. For p < 7, we can take

h = 1 + N
r7−p

0

r7−p , r7−p
0 ≡ gs (2πls)7−p

(7 − p)v8−p
. (1.3.61)

The fields not mentioned in (1.3.59) are zero, and in particular so is H = dB.
For the sake of a unified description, in (1.3.59) we have given the transverse RR

field-strength F8−p. For p ≥ 4, this is one of the RR forms that appear in the type
II supergravity actions of Section 1.2. For p ≤ 2, this is one of the magnetic duals
defined in (1.3.40); using that definition backward on (1.3.59) gives the original RR
form Fp+2, which has components Fa0...apr . For p = 3, the flux F5 is self-dual, and
both the transverse and parallel directions appear.

The xiε⊥ii1...i8−p in (1.3.59b) can be interpreted as the angular part of the transverse
directions, as we will see better in Section 4.1.3; its integral is simply v8−p, and
the prefactor is fixed so that (1.3.46) and (1.3.47) holds with n = 1. The equations
of motion then determine the coefficient of r7−p in (1.3.61), but only up to a sign;
the correct choice can be decided by examining the long-distance behavior of the
gravitational field, which should be attractive given that we want positive tension as
in (1.3.28).

Generalizations
The solutions (1.3.59) are part of a more general family, where there are two
horizons; (1.3.59) is the extremal limit where the two horizons have coalesced, and
have been set to r = 0 by a coordinate change.15 This extremality is related to the
equality of the tension and the charge density of a D-brane, or in other words the
coefficients of the DBI and WZ terms in (1.3.24). It is quite common for the extremal
limit to saturate the BPS bound, and vice versa.

15 See, for example, [68, sec. 1] or [69, chap. 19] for more details; the change of variables is similar to
the one we will see in Section 11.1 for charged black holes.
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41 D-branes

Another generalization, which will be more important for us, consists in con-
sidering parallel branes. This can be achieved by solving (1.3.60) with a harmonic
function, which has several point-like sources in the transverse space rather than just
one. For p < 7, (1.3.61) is replaced by

h = 1 + r7−p
0

∑
α=1

1
|x − xI |7−p

, (1.3.62)

where xiI is the position of the Ith D-brane in transverse space. The fact that this
solution is static signals that parallel Dp-branes don’t exert any force on each other.
We could also have expected this from the analysis in Section 1.3.6, where we
concluded that parallel Dp preserve the same 16 supercharges as a single one.

Asymptotics and singularities
Returning to a single stack (1.3.61), at large r we would expect the solution to
be asymptotic to flat space. The radius r0 is interpreted as the region where the
gravitation field is strong. For gs → 0, it shrinks to zero; this might seem strange,
since the D-brane’s tension (1.3.28) gets large in this limit. The reason is the prefactor
e−2φ in the NSNS sector action (1.2.17), so that the effective Newton constant is
2κ2g2

s ; this overcomes the g−1
s in the D-brane tension, so that their product goes like

gs, which is the power observed in r7−p
0 . (Indeed, (2πls)7−p = 2κ2τDp.)

In fact, as we will now see, r = 0 is in most cases a singularity; either curvature,
or dilaton, diverge there. As we mentioned, this singularity is expected to be resolved
in fully fledged string theory. For example, in Section 7.2.3 we are going to see how
this happens for the D6-brane solution.

The behavior of this solution as r → 0 depends on p:

• If p < 3, the curvature invariants remain finite as r → 0; in particular, the Ricci
scalar R → 0. But the string coupling diverges. r = 0 is at infinite distance.

• If p = 3, again the curvature invariants are finite, and moreover φ is constant. In
fact, an analytic continuation beyond r = 0 exists [70], but once again r = 0 is at
infinite distance.

• If 3 < p < 7, the curvature diverges as r → 0, but the string coupling eφ → 0.
• For p = 7, there are two transverse directions, and a function satisfying (1.3.60) is

a logarithm:

h = −gsN
2π

log(r/r0) . (1.3.63)

r = 0 is again a singularity. The metric is no longer asymptotic to flat space
at large distance: for r > r0 the function h becomes negative, and the solution
loses meaning. In practice, this is seldom a problem, because in the context of
compactifications the transverse directions to a D7 are compact anyway.

• For p = 8, there is only one transverse direction x9, and a function satisfying
(1.3.60) is piecewise-linear:

h = h0 +
gsN
2πls

|x9 | . (1.3.64)

Again, the solution is no longer asymptotic to flat space, and has a critical distance,
dependent on the integration constant h0, which is related to the value of the dilaton
at x9 = 0.
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NS5-branes
Similar solutions to (1.3.59) exist that are supersymmetric and charged under the
Kalb–Ramond field B.

One represents the back-reaction of a stack of superimposed fundamental strings
F1; we will see it later in an exercise. Another describes a new object, extended along
five space dimensions and hence called NS5-brane. The solution is rather similar to
(1.3.59) for p = 5:

ds2
NS5 = ds2

‖ + hds2
⊥ , eφ = gsh1/2 , (1.3.65a)

Hi jk = 2N xlε⊥li jk . (1.3.65b)

ds2
‖ , ds2

⊥ describe the six parallel and four transverse directions; h = 1 + Nl2
s /r2. (In

form notation, (1.3.65b) reads H = 2NvolS3 .) A definition of this solitonic object
from open strings is not available, but we will see later that it plays an important
role in string dualities, which give indirect information. One can infer from this an
effective action in the style of (1.3.24). In particular, one obtains that it couples to
the dual potential B6, defined similar to (1.3.40) as

∗ H = −dB6 . (1.3.66)

The tension is

TNS5 ≡
τNS5

g2
s

≡ 1
(2π)5l6

sg2
s

, (1.3.67)

which differs from TD5 = 1/((2π)5l6
sgs) from (1.3.28) in the power of gs, signaling

that the NS5 is not a D-brane. Its effect on the Bianchi identity is

dH = −2κ2τNS5δNS5 , (1.3.68)

in the spirit of (1.3.43).

Exercise 1.3.1 In flat ten-dimensional space R10, consider a D-brane on Sp ×R, where
Sp = {∑p

m=1(xm)2 = R2}. Does it satisfy (1.3.51)?
Exercise 1.3.2 Obtain (1.3.47) from (1.3.43).
Exercise 1.3.3 Show that the metric of the D8 solution can be put in the conformally

flat form

ds2
10 = f ds2

Mink10
, (1.3.69)

where f is a function and Mink10 denotes as usual flat Minkowski space.
Exercise 1.3.4 Check the sign of the coefficient of r7−p in (1.3.61) by considering the

potential of a p-brane with DBI action (1.3.29) in the solution (1.3.59): the
force should be attractive. Next, consider a Dp-brane probe, with its full action
(1.3.24); check that the total force in this case is zero.

1.4 Dualities

We have learned that in flat space D-branes extended along flat subspaces are BPS
solitons, the analogue of monopoles in supersymmetric YM theories; in this section,
we will use them to find information on the strong-coupling behavior of string theory.
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1.4.1 From IIA to eleven dimensions

D0-branes as KK-modes
D0-branes are particle states. When gs = eφ is constant, from (1.3.28) we see that
they have a mass

mD0 =
1

lsgs
. (1.4.1)

States made of k coincident D0-branes have masses k/(lsgs). They are all multiple
of the same fundamental value (1.4.1), just like a tower of KK states (0.2.1). Taking
this analogy seriously suggests that a new dimension has been generated dynamically,
of size

L10 = 2πlsgs . (1.4.2)

At weak coupling, (1.2.18) implies L10 � lPl: the size of this extra circle is sub-
Planckian, and has unclear physical meaning. But at strong coupling L10 � lPl: the
new dimension is macroscopic, and cannot be ignored. So if the KK interpretation of
D0-branes is correct, we should expect the strong-coupling limit of IIA string theory
to have an eleven-dimensional interpretation.

Since these states are BPS, supersymmetry should not be broken in the process,
and we would expect the eleven-dimensional theory to still have 32 supercharges.
Such a theory exists and is unique.

Eleven-dimensional supergravity
The fields are the metric, a three-form potential, and a single gravitino:

gMN , AMNP ; ψαM . (1.4.3)

The field-strength of the three-form is G4 = dA3, in the form notation of
Section 1.2.1. The bosonic action is [71]

S11 =
1

2κ2
11

[∫
d11x

√
−g11

(
R11 −

1
2
|G4 |2

)
− 1

6

∫
A3 ∧ G4 ∧ G4

]
. (1.4.4)

The supersymmetry transformations contain a single Majorana ε, which has 32
independent components.

On Mink10× S1, if the circle is small we can ignore dependence on it, and describe
the theory by ten-dimensional fields. The metric g11

MN generates in d = 10 a metric,
a vector field gM 10 and a scalar g10 10. The latter two can be identified with CM and
the dilaton in IIA. The three-form potential AMNP generates a three-form and two-
form AMN 10; these can be identified with CMNP and BMN respectively. To reduce
the gravitino, we notice that a spinor in d = 11 becomes a pair of spinors of both
chiralities in d = 10; so ψMα generates ψMα, ψM α̇, ψ10 α, ψ10 α̇, which can be
identified with the gravitinos and dilatinos in Table 1.1.
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More precisely, with the field identification

ds2
11 = e−

2
3 φ (ds2

10 + e2φ (dx10 − C1)2) , (1.4.5a)

A3 = C3 − B ∧ dx10 , (1.4.5b)

the action (1.4.4) turns into (1.2.15), the IIA action for F0 = 0. The four-form field-
strength is

G4 = dC3 − H ∧ dx10 (1.2.9)
= F4 − e−2/3φH ∧ e10 . (1.4.5c)

To identify κ11, notice that in (1.4.4) the integral over dx10 gives an overall L10; this
would give κ2

11 = κ
2L10. For the physical Planck length, however, we also want to

include the e−2φ = g−2
s factor in (1.2.17), as we did in (1.2.18). Defining 2κ2

11 =

(2π)8l9
P11 by analogy with (1.2.16):

lP11 = g1/3
s ls . (1.4.6)

L10 is macroscopic with respect to this length again when gs � 1.
The dimensional reduction we have just described might look dangerous, since in

this regime IIA is strongly coupled, and strictly speaking we don’t know its action.
However, as we mentioned after (1.2.23), the two-derivative action is protected by
supersymmetry, and so for slowly varying fields (1.2.15) is still appropriate.

Still (1.4.4) cannot be the end of the story: it is nonrenormalizable, so it cannot be
itself the strong-coupling definition of IIA string theory. Rather, we should think of
it as another effective action, useful in the regime where gs � 1, just like (1.2.15)
is useful in the regime gs � 1. Of what theory is it an effective action? It cannot
be one of the perturbative string theories we know, since it is defined on an eleven-
dimensional spacetime. Moreover, in (1.4.4) there is no coupling parameter that can
be made small, like gs was for perturbative strings. So the chances that we can find
a weakly coupled description at this point appear slim. We will proceed anyway, and
see what we can learn about it. This mysterious theory in d = 11 is called M-theory,
and we conclude [72]

M-theory on S1 � IIA . (1.4.7)

Membranes
The relation to IIA strings suggests that M-theory should also have extended objects.

All BPS objects are charged under some potential. Dp-branes are charged under
Cp+1; the M-theory potential A3 suggests the existence of a 2-brane, also called a
membrane. One can indeed find a gravitational solution charged under A3, along
the lines of (1.3.59) (Exercise 1.4.6). Perhaps more impressively, one can write a
supersymmetric theory [73] for a membrane embedded in spacetime Rd , only for
d = 11. This is strongly reminiscent of string theory, where the one-dimensional
object F1 is embedded in d = 10. Unfortunately this theory is difficult to quantize; we
will find a better version in Chapter 11. Still we can postulate this object’s existence
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and see what follows from it. This membrane is called M2-brane, and is one of the
inspirations for the name “M-theory.”

It is natural to think that the M2 becomes the D2 when the eleventh dimension
becomes small, L10 → 0. In particular, the two tensions should be the same when
viewed by a ten-dimensional observer:

TM2 = TD2
(1.3.28)
=

1
4π2l3

sgs

(1.4.6)
=

1
4π2l3

P11
. (1.4.8)

We can also consider a D2 extended along x10. In the limit L10 → 0, in d = 10 this
will look like a p = 1-brane. The only such object is the fundamental string F1. So
we are led to also postulate

L10TM2 = TF1
(1.1.5)
=

1
2πl2

s

. (1.4.9)

Indeed, this follows from (1.4.2) and (1.4.8); we can regard this as an alternative
derivation for (1.4.2).

When several M2-branes are brought together, one expects a nonabelian theory to
arise, since this happens for D2-branes. As we noted earlier, for M-theory we don’t
have direct control over the membrane dynamics, so we cannot just derive such a
theory directly. Moreover, in IIA the YM parameter on the D-brane world-volume is
(1.3.33), and we could make it small by changing gs; in M-theory we don’t have a
similar parameter. In spite of these difficulties, the non-abelian M2 theory was found
[74–77]. The trick was essentially to consider M2-branes on a geometry obtained as
an orbifold, namely by identifying some space directions by the action of a discrete
group Zk ; the geometry is still flat, but the M2 dynamics now contains factors of 1/k
that provide perturbative control. We will comment on this further in Section 11.3.

M5-branes
D-branes can couple to the magnetic dual potentials defined in (1.3.40). In the same
spirit we can define a potential A6 by

∗ G4 = dA6 . (1.4.10)

A brane coupling to it would be extended along p = 5 space dimensions; hence we
call it M5-brane.

Its properties can again be inferred from its dimensional reductions. It is expected
to have a two-form potential b2 on its world-volume, whose IIA reduction becomes
the gauge field a. To avoid it from also generating an unwanted two-form, one
imposes a duality condition h3 = ∗h3, h3 = db2. As for IIB supergravity, this
creates a problem in writing an action, although a proposal for overcoming it is
known [78]. This world-volume theory has N = (2, 0) in d = 6. For coincident
M5-branes, the world-volume theory is expected to have ∼ N3 degrees of freedom,
rather than the familiar gauge theory ∼ N2. This can be inferred from anomalies [79],
holography [80], field theory [81–83], and conformal bootstrap [84]. This theory
remains mysterious to this day; for recent efforts, see, for example, [85, 86].

We can reduce an M5 to IIA in two ways, by wrapping it along the S1 or not; this
produces branes with p = 4 and p = 5. Given the list of available BPS objects in IIA,
these must be the D4 and the NS5 respectively. This leads to
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TM5 = TNS5
(1.3.67)
=

1
(2π)5l6

sg2
s

(1.4.6)
=

1
(2π)5l6

P11
,

L10TM5 = TD4
(1.3.28)
=

1
(2π)4l5

sgs
.

(1.4.11)

Again the two are in agreement once we recall (1.4.2). We could also regard the first
relation as a derivation of TNS5.

There are still some objects in IIA that we have not recovered from M-theory:
D6- and D8-branes. D6-branes are a source for the flux F2; we see from (1.4.5a) that
its potential C1 becomes part of the metric in eleven dimensions. So we expect a
D6-brane to become a purely geometrical object in d = 11; we will see how this
comes about in Section 9.2.

Massive IIA
D8-branes are more troubling. They a source for the Romans mass F0; but the
dimensional reduction (1.4.5) of eleven-dimensional supergravity only reproduced
the F0 = 0 version (1.2.15) of IIA. Even our original argument for the emergence of
an eleventh dimension no longer works with F0 � 0, because D0-branes have a term∫

F0a from (1.3.39), and the equation of motion on the 0 + 1-dimensional world-
sheet gives F0 = 0, a contradiction. This is known as a “tadpole” problem because
the field a has a nonzero one-point function.

The nonperturbative definition of massive IIA cannot be conventional M-theory;
it is an interesting open question. We will see in Section 10.1 that there are no
classical supergravity solutions with F0 � 0 and gs � 1 [87]; but from a quantum-
mechanical point of view, the path integral should be over all configurations, so the
nonperturbative formulation is still needed. Applying the formulas (1.4.5) to the
D8-brane solution, one obtains a metric in eleven dimensions [88], but this does
not clarify what the action is. There are in fact arguments against the existence
of deformations of eleven-dimensional supergravity that preserve 32 supercharges
[89–91]. More recently, it has been suggested that these can be overcome by a “dual”
formulation for the graviton [92].

This might make us doubt that massive IIA is really part of string theory. There
are several reasons to believe that it is. Anticipating a bit some later discussions:

• We will see in Section 1.4.2 that T-duality relates F0 to the other RR fluxes, and the
D8 to the other Dp-branes.

• Related to this, one can get to M-theory from massive IIA with a sequence of
dualities. At the end of Section 1.4.5, a particular quotient of massive IIA will be
related to heterotic string theories, and to M-theory on spaces with boundaries.
There are other related duality sequences [93, 94].

• Several AdS solutions exist with F0 � 0, some of which we will see in Chapter 11.
These can be tested quantitatively using the AdS/CFT correspondence [87, 95–97].

1.4.2 T-duality

T-duality can be obtained from the world-sheet; we could have discussed it already
in Section 1.1. But it can also be interpreted in terms of KK states, similar to our
motivation for eleven-dimensional supergravity.
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T-duality can be used when at least one of the directions is an S1. For definiteness
and simplicity, in this section we consider a spacetime

R
10−k × (S1)k , (1.4.12)

with a line element ds2
10 = ds2

R10−k +
∑

M=k+19 (dxM )2. The only data of the torus are
the periodicities Lk of the S1s. In Section 4.2.6 we will deal with more complicated
situations, which we will cast in the language of fiber bundles.

We first consider k = 1, so that there is a single periodic coordinate x9 ∼ x9 + L.
In this case, T-duality is the equivalence L � L̃,

L̃ =
4π2l2

s

L
. (1.4.13)

For superstrings, the duality also exchanges IIA and IIB.

KK argument
We first show (1.4.13) in the bosonic string. A first piece of evidence comes from the
formula for the spectrum: (1.1.23) is invariant under

R → R̃ =
l2
s

R
, w ↔ q , (1.4.14)

matching (1.4.13) for L = 2πR, L̃ = 2πR̃. We did not derive (1.1.23), so here is a
perhaps more intuitive version of the same statement, modeled on the D0 argument
leading to (1.4.2). Consider a state with a string winding w ∈ Z times around the S1.
From the nine-dimensional point of view, it looks like a particle, with mass

L TF1 =
Rw

l2
s

. (1.4.15)

Comparison with (0.2.1) suggests that such states form a KK tower for an extra S1

dimension of size L̃ = 2πR̃ = 2πl2
s /R, reproducing (1.4.14). This version of the

argument also applies directly to superstrings.

Dualization of world-sheet scalars
We now show that the world-sheet action is invariant under (1.4.13) (see, for
example, [98, 99]). We focus on the periodic scalar x ≡ x9, ignoring the other
directions; for simplicity, we also set B = 0 and the dilaton to a constant. The relevant
part of (1.1.4) is then

Sx = −
1

4πl2
s

∫
d2σ∂αx∂αx . (1.4.16)

Introduce a vector field bα and consider the alternative action

Sb,x = −
1

4πl2
s

∫
d2σ(bαbα − 2εαβ∂αxbβ) . (1.4.17)

Since bα has no kinetic term, we can substitute it with the solution of its equation
of motion, bα = εαβ∂βx; then Sb,x reduces to (1.4.16). On the other hand, the x
equations of motion are

εαβ∂αbβ = 0 . (1.4.18)
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Naively, the solution is simply bα = ∂α x̃ for a new scalar x̃. Substituting this in
(1.4.17) gives an action identical to (1.4.16), but with x → x̃.

This does not seem very interesting: the action for a free scalar is equivalent to
that of another free scalar. Our real interest is how the periodicities are mapped. Let
us Wick-rotate σ0 and consider the Euclidean model for (1.4.17). For definiteness,
we take σi ∼ σi + 2π. Since x ∼ x + 2πR, we can parameterize

∂αx = ∂αxper + 2πnαR , (1.4.19)

where xper is periodic. ∂αx is only locally the gradient of a function: its integral along
the σi can be nonzero. Likewise, the solution to (1.4.18) is not just bα = ∂α x̃, but
more generally

bα = ∂α x̃per + 2πλα , (1.4.20)

where λα are constant. If we replace this and (1.4.19) in (1.4.17), we get a term
− 2π

l2s
εαβnαRλβ. The nα are part of the degrees of freedom of x; since they are discrete

we cannot vary them, but in the path integral we should still sum over them. But now∑
m eixm = 2πδ(x−2πm), the Fourier series analogue of the Fourier transform of the

delta function; this implies λα = (l2
s /R)mα with mα ∈ Z. Comparing (1.4.20) with

(1.4.19), the periodicity of x̃ is determined as 2πR̃, with R̃ = l2
s /R. This reproduces

(1.4.14).
Returning to Lorentzian signature, the equation of motion (1.4.18) is ∂α x̃ =

εαβ∂βx; so

∂± x̃9 = ±∂±x9 , (1.4.21)

while of course the xM with M � 9 are unchanged. In other words, T-duality is
equivalent to a parity transformation acting on the right-movers only. (In the bosonic
string, this can also be seen from the spectrum (1.1.23).) As familiar from QFT (and
reviewed in Section 2.1.1), a parity acts on spinors by a gamma matrix. For type II
superstrings, this changes the chirality of the GSO projection in such a way that IIA
is mapped to IIB. To summarize:

IIA on S1 � IIB on S̃1 . (1.4.22)

Action on D-branes
Another consequence of (1.4.21) is that N and D boundary conditions are exchanged.
Indeed, the N condition is ∂σ1 x9 = 0, which becomes ∂σ0 x̃9 = 0; this fixes x̃9 to be a
constant, so it is the D condition. More precisely, since the aa and xi have a common
origin from the 8V in (1.3.21), the component a9 is exchanged by T-duality with the
scalar x9. By (1.2.14) and (1.3.23), a9 ∼ a9 + 2π/L9. We conclude

Dp along x9 with a9 = a
T9←→ D(p − 1) at x̃9 = 2πl2

sa . (1.4.23)

We know from (1.3.59) that a Dp sources an RR field along the angular directions
surrounding it. Since in (1.4.23) a Dp loses a parallel direction, the RR flux gains an
index:

Fm1...mk

T9←→ Fm1...mk9 . (1.4.24)
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We are going to give a more complete description of the T-duality’s action on fields
in Section 4.2.6.

Let us compare D-brane tensions on both sides of (1.4.23), in the spirit of (1.4.15).
From a nine-dimensional point of view, both objects in (1.4.23) look (p − 1)-
dimensional. T-duality states that physics should be the same on both sides, so the
tensions should be equal:

L9 TDp = TD(p−1) ⇒ L9

(2π)pgsl
p+1
s

=
1

(2π)p−1g̃sl
p
s

; (1.4.25)

so the value of gs after T-duality is

g̃s = gs
2πls
L9

. (1.4.26)

Thus weak coupling is mapped to weak coupling, unlike the SL(2,R) of
Section 1.2.3. This is consistent with our use on both sides of the world-sheet
approach, which is perturbative in gs.

Tori and bound states
In presence of a torus (1.4.12), we can choose to T-dualize along any subset of the
k compact directions. If k = 2, T-duality along a single direction exchanges IIA
and IIB, so T-duality T89 along both maps IIA to IIA, and IIB to IIB. The action on
D-branes is also a straightforward iteration of the rule (1.4.23). For example, a D2
extended along both x8 and x9, or in other words “wrapping” the torus T2 = S1 × S1,
is mapped by a single T-duality T9 to a D1, and by T89 to a D0. In the top part of
Figure 1.1, the T2 is represented as a rectangle; the opposite sides are meant to be
identified. The D1-branes along x9 are mapped by T9 to D0-branes; and a D1 along
x8 is mapped to a D2. But what is the T-dual of an oblique D1-brane, which winds
w8 times along S1

8 and w9 times along S1
9 , such as the one on the bottom-left of

Figure 1.1?

f89 = 2 × 2π

L8

L8

L8

L8

L9

L9

L̃9

L̃9

Figure 1.1 T-duality acting on D1-branes on a T2. It maps horizontal and vertical D1-branes to D0- and D2-branes
respectively; it maps oblique D1s to D2/D0 bound states.

https://doi.org/10.1017/9781108635745.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108635745.004


50 String theory and supergravity

Such a D1 is still straight: so it should be BPS. From the point of view of an
observer in the noncompact eight dimensions, it is a particle with mass

mobD1 = TD1 Length(obD1) =
1

2πl2
sgs

√
w2

8 L2
8 + w

2
9 L2

9 . (1.4.27)

We may imagine a process where w8 D1-branes wrapping S1
8 and w9 D1s wrapping

S1
9 snap together to create a single oblique D1. In Figure 1.1, this process would

connect the top-left and bottom-left situations. In this process, the total mass
decreases: because of the triangular inequality, (1.4.27) is smaller than TD1× (w8L8+

w9L9). In a sense, the oblique D1 is a bound state of the horizontal and vertical ones.
Now, the latter are mapped under T9 to w8 D2s and w9 D0s respectively; so we expect
the oblique D1 to be mapped to a bound state of these objects on the IIA side.

This is confirmed by the duality between world-volume gauge fields and transverse
scalars. To avoid having to deal with nonabelian branes, we take w8 = 1. We describe
an oblique D1 by x9 =

w9L9
L8

x8, so (1.4.23) gives

a9 =
1

2πl2
s

w9L9

L8
x8 . (1.4.28)

As a cross-check, 1
2π

∫
D2

f89dx8dx9 = w9 ∈ Z, in agreement with Dirac quantization.
Now recall from the discussion in (1.3.37) that the presence of f turns the D2 into a
bound state of a D2 and w9 D0s, confirming our expectations.

This D2 is viewed as a particle in eight dimensions, but to compute its mass we
cannot just use the formula TD2 × L8 L̃9; because of the presence of f � 0, we have
to use the DBI term. The potential energy is obtained by integrating the Lagrangian
density over the space dimensions; we need to evaluate the determinant of the 2 × 2
matrix

(
1 F89

−F89 1

)
. Recalling also (1.3.26) with B = 0:

mD2/D0 = TD2L8 L̃9

√
1 + (2πl2

s f89)2 (1.4.28)
=

L8 L̃9

(2π)2l3
s g̃s

√
1 + w2

9

L2
9

L2
8

(1.4.13),(1.4.26)
=

1
2πl2

sgs

√
L2

8 + w
2
9 L2

9
(1.4.27)
= mobD1 .

(1.4.29)

So under T-duality the square root appearing in (1.4.27) because of Pythagoras’
theorem is exchanged with the square root in the DBI term of (1.3.24).

1.4.3 S-duality in IIB

In Section 1.4.1, we found a nonperturbative completion to IIA string theory by
focusing on the behavior of D0-branes at strong coupling. In IIB, we don’t have
(BPS) D0-branes; the next “smallest” object is a D1-brane.

The D1 tension TD1 =
1

2πl2sgs
becomes small at strong coupling, suggesting that

D1s might become fundamental objects. We have described all known perturbative
string theories in Section 1.1; could this be a new one? The fields are (1.3.22); the
world-volume a field can be integrated out, because gauge fields in two dimensions
are nondynamical. One finds that the D1 action becomes at strong coupling simply
the IIB perturbative string again, in the Green–Schwarz formulation. So the strong-
coupling limit of IIB is IIB, but with F1 ↔ D1.
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The SL(2,R) symmetry (1.2.38) can relate the weak and strong coupling regimes
of IIB supergravity; but in Section 1.2.3 we gave arguments against it being a
symmetry of IIB strings. One argument was that it would have required a continuum
of string states, coupling to any linear combination cC2 + dB. Now we know at least
one such a string state: the D1, which couples to C2. So it is possible that at least the
element

s =

(
0 −1
1 0

)
(1.4.30)

is a symmetry of the full IIB string theory: it exchanges B and C2, and hence F1s and
D1s. This is called S-duality.

D-brane duals
As usual, let us check how the various extended objects transform, setting for
simplicity C0 = 0. From (1.2.38) and (1.4.30):

φ → −φ , gMN → e−φgMN , F3 ↔ −H , F5 → F5 . (1.4.31)

Because of how the metric transforms, a p-brane’s tension picks up a factor

g
−(p+1)/2
s . (1.4.32)

So, for example,

TF1 =
1

2πl2
s

→ 1
2πl2

sgs
= TD1 . (1.4.33)

On the other hand, TD1 picks up a g−1
s , but at the same time the gs in the denominator

gets inverted; so the two factors cancel out and we obtain TF1. This confirms that
(1.4.30) indeed exchanges F1s and D1s.

We next transform the D3:

TD3 =
1

(2π)3l4
sgs

(1.4.32)
→

g−2
s

(2π)3l4
sg

−1
s

= TD3 . (1.4.34)

So the D3-brane should be invariant under (1.4.30), consistent with the invariance of
F5 in (1.4.31), of which it is a source. Next we have

TD5 =
1

(2π)5l6
sgs

(1.4.32)
→

g−3
s

(2π)3l4
sg

−1
s

(1.3.67)
= TNS5 . (1.4.35)

Again this is consistent with the transformation in (1.4.31) of the fields they create,
B and C2.

The next object would be the D7-brane. The field it creates is C0, which we
have chosen to set to zero. More importantly, we have seen after (1.3.63) that its
back-reaction on the metric is not localized, but grows logarithmically; so it is not
really a soliton. We will discuss its S-dual in Section 9.4. Finally, we would have
the D9-brane, which fills all of spacetime. In fact, a D9 by itself is inconsistent. We
discussed its world-volume theory preceding (1.3.57), where we argued it to be a
supersymmetric YM with 16 supercharges. This theory is chiral, and suffers from a
gauge anomaly. This can be cured by introducing more ingredients, as we will do in
Section 1.4.4. It is still possible, but subtler, to define an S-dual to the D9, dubbed
NS9 [100, sec. 6].
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Other S-dualities
We now would like to know whether there are other elements of SL(2,R) besides
(1.4.30) that survive in full string theory. A natural candidate is

t =

(
1 1
0 1

)
. (1.4.36)

Since |cτ + d | = 1, the metric does not transform under (1.2.38). Moreover
τ → t · τ = τ + 1; taking real and imaginary parts, φ → φ, and

C0 → C0 + 1 . (1.4.37)

By (1.3.44), this is a large gauge transformation, suggesting that t is indeed a
symmetry of string theory.

Equations (1.2.38) and (1.4.36) also give B → B, C2 → C2 + B. The latter implies
that the D1 turns into an object that couples to both C2 and B: a D1/F1 bound state.
As a cross-check, consider placing a D1 and an F1 next to each other, both wrapping
an S1 [101]. The F1 can break in two open strings that end on the D1. Recall from
(1.3.23) that the endpoints of an open string behave on a D-brane as electric charges
for the world-sheet potential a. Now the endpoints of the F1 can recombine, making
the open F1 disappear altogether. This leaves behind a flux f01 � 0 on the D1,
constant because of the Maxwell equation. Equation (1.3.32) contains a term |F |2,
which in turn contains −2πl2

s f01B01 |D1. This is a coupling to B; so we have indeed
obtained a D1/F1 bound state.

Since s and t, (1.4.30), (1.4.36) are both symmetries, so are all the elements of the
group they generate:

SL(2,Z) . (1.4.38)

This is called S-duality group to distinguish it from the particular element (1.4.30).
Acting on D1s and F1s, (1.4.38) generates more general bound states of p F1s and

q D1s called (p, q)-strings. More precisely, it acts on
(
p
q

)
in the vector representation,

with an F1 represented by the vector
(

1
0

)
, and a D1 by

(
0
1

)
.

Since F5 is invariant under (1.2.38), D3-branes are invariant under the whole
SL(2,Z). As we discussed around (1.3.57), the field theory living on a D3 stack
has 16 supercharges; for p = 3, this is N = 4-supersymmetric YM in d = 4.
Equation (1.4.38) implies a QFT duality that maps weak to strong coupling, because
g2

YM = 2πgs, by (1.3.33). This was indeed discovered long before it resurfaced in
string theory [102]:

τYM → aτYM + b
cτYM + d

, (1.4.39)

with τYM as in (1.3.12); this is a strong check of S-duality. (The θ angle is created
by the C0 contribution to the WZ term, similar to the discussion leading to (1.3.37).)

Next we consider D5- and NS5-branes. They couple to the magnetic potentials C6

and B6 respectively, which were defined in (1.3.40) and (1.3.66) from F3 and H3. This
implies the existence of bound states of D5s and NS5s, called (p, q)-five-branes. We
expect (p, q)-seven-branes for similar reasons, but we postpone their discussion to
Section 9.4.
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From M-theory to IIB
Consider now M-theory on R9 × T2 [103, 104]; let the two sides of the T2 have
lengths LA and L10. From Section 1.4.1, this is equivalent to IIA on R9 × S1, with
gs ≡ gA = L10/2πls. Further T-dualizing along the remaining S1 gives IIB on the
same space; from (1.4.13) and (1.4.26), the length of the S1 and the string coupling
are

LB =
4π2l2

s

LA
, gB = gA

2πls
LA
=

L10

LA
. (1.4.40)

There is also an equivalent but more direct logic taking M-theory on R9 × T2 to
IIB. Naively, shrinking the T2 results in a nine-dimensional spacetime. However, M2s
wrapping the T2 w times give particle states of mass

TM2 Area(M2) =
wLAL10

(2π)2l3
P11

. (1.4.41)

Interpreting this once again as a KK tower (0.2.1) gives

LAL10

(2π)2l3
P11
=

2π
LB

, (1.4.42)

suggesting the emergence of a new S1 of length LB, that becomes large as the T2

gets small; so spacetime is ten-dimensional after all. Wrapping the M2s along the two
circles of the torus also gives rise to two types of string states; so the ten-dimensional
theory is IIB, which has the F1 and D1. Comparing the tensions:

LATM2 = TD1 ⇒ LA

(2π)2l3
P11
=

1
2πl2

sgB
, (1.4.43a)

L10TM2 = TF1 ⇒ L10

(2π)2l3
P11
=

1
2πl2

s

. (1.4.43b)

Combining (1.4.42) with (1.4.43), we recover (1.4.40). We can generalize (1.4.43) by
wrapping one direction of the M2 along an oblique direction (k, l) direction, winding
p times along the first circle and q along the second (as in the bottom-left panel of
Figure 1.1). This gives the (p, q)-strings, the bound states of p D1s and q F1s.

It was a bit arbitrary to decide in (1.4.43) that wrapping the M2s on the first circle
gives a D1, and on the second an F1. Had we done the opposite, we would have
obtained (1.4.40) with L10 ↔ LA, and hence with gB → 1/gB. So exchanging the role
of the two directions of the torus in M-theory gives rise to the S-duality (1.4.30) in
IIB. To see what generates the other elements, we consider a more general geometry
for the torus. We define the two-dimensional torus as a quotient

T2 ≡ C/Z2 , (1.4.44)

much as we did in (1.1.40) when we compactified 16 of the bosonic coordinates to
define the heterotic string. A fundamental region for this equivalence relation is now
a parallelogram, with the two opposite sides identified. The metric on C � R2 is
taken to be the Euclidean one. Up to rescalings and rotations, we can always make
one of the generators of the Z2 lattice to be 1; but the second is then an arbitrary
complex number τ, called modular parameter. So the two identifications in (1.4.44)
are z ∼ z+1 ∼ z+τ. All this is illustrated in Figure 1.2. The tori we have discussed so
far, in particular (1.4.12) for k = 2, were “rectangular”: their τ was purely imaginary.
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¿ ¿ + 1

1

Figure 1.2 Fundamental region for the identification (5.3.64) defining a torus. The sides marked by the same
symbol are to be considered as identified.

R9

R10

∞

∞0

0

Figure 1.3 M-theory onR9 × T2.

Sometimes, different τ correspond to the same lattice: for example, τ and τ + 1.
More generally, any Möbius transformation τ′ = aτ+b

cτ+d , with a, b, c, d ∈ Z, also
defines the same torus as τ. This is how the SL(2,Z) symmetry of IIB manifests
itself in M-theory. An M2 wrapping one of the two sides of the fundamental region
in Figure 1.2 is now mapped under a Möbius transformation to one wrapping an
oblique line, which we argued corresponds to a (p, q)-string.

We summarize the relation among M-theory, IIA, and IIB with the parameter
space in Figure 1.3. When both radii are large, spacetime is eleven-dimensional,
and the most appropriate description is the mysterious M-theory. When one of the
radii is small and the other is large, there are ten macroscopic dimensions; the theory
becomes IIA on R9×S1. When both radii are small, spacetime naively becomes nine-
dimensional, but in fact there is a dual IIB description where it is ten-dimensional.

1.4.4 Orientifolds

It is common to define a space by means of an equivalence relation, as for example
in the definition (1.4.44) of the torus. In string theory, one can also quotient by
symmetries that act on the world-sheet.

A time slice of the world-sheet is one-dimensional; the only possible nontrivial
action on it is world-sheet parity Ω : σ1 → −σ1. This squares to the identity, so
the action R on spacetime should be an involution, a map xM → RM (x) such
that R2 = 1. We define an orientifold to be the quotient of a string theory by a
simultaneous action of Ω and such a spacetime involution [105–107]. (For more
thorough discussions, see [108, 109].)
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R acts on fermions as a product of the gamma matrices in the transverse directions,
as we mentioned after (1.4.21) and will review in Section 2.1.1. This sometimes
squares to −1, and one then has to include a factor (−1)FL , defined as −1 on fields
that are fermionic in the left-mover Hilbert space, or in other words on the RNS and
RR sectors. If Rp is locally the reflection of 9−p coordinates, the orientifold action is

ΩRp if p = 0, 1, 4, 5, 8, 9 ;
Ω(−1)FL Rp if p = 2, 3, 6, 7 . (1.4.45)

The action of Ω in the NSNS sector states (1.1.8) is obtained by noting that
exchanging left- and right-movers is equivalent to exchanging the two indices M N .
So gMN and φ remain invariant, while BMN picks up a sign. The Ω action on the
RR sector can be inferred likewise. The overall conclusion is that the bosonic fields
should satisfy

R∗pφ = φ , R∗pg = g , R∗pB = −B , R∗pFk = −(−1) �p/2�+ �k/2�Fk ,
(1.4.46)

where R∗pαM1...Mk
(x) = ∂M1 RN1

p . . . ∂Mk
RNk
p αN1...Nk

(x) (a definition that will find
its proper place in Section 4.1.4). So an orientifold acts a bit like a mirror, dictating
that the physics in one half of spacetime should be a specular copy of that in the other
half.

Rp has a (p + 1)-dimensional fixed locus, which is called an orientifold plane and
denoted by Op, in analogy with the notation for D-branes. Op-planes have a tension
and RR charge, as Dp-branes do; but as we will see, they can have negative tension,
so they are in a sense a source of antigravity. Usually objects with negative mass can
generate instabilities,16 but this is avoided here because Op-planes are stuck at the
fixed locus and are not dynamical. Since open strings do not end on an O-plane
(unless D-branes also happen to be located on top of it), the open string modes
(1.3.22) are absent, and in particular there is no transverse fluctuation xi .

Op-planes also preserve half-supersymmetry in flat space, as D-branes do; this
makes them stable under time evolution. The preserved supercharges are again those
that satisfy (1.3.51).

Op±-planes
The action on open strings needs to be specified separately. World-sheet parity still
reverses the orientation of the string, and now exchanges the two endpoints:Ω : σ1 →
π−σ1. SinceΩ exchanges the endpoints, it should also reverse the order of CP labels
(Section 1.3.6). Omitting other quantum numbers, this would lead to Ω|I J〉 = |JI〉,
or more generally to

Ω|I J〉 =
∑
JK

MIK M−1
LJ |LK〉 . (1.4.47)

Imposing Ω2 = 1 gives

M−1 M t = ∓1 . (1.4.48)

16 Already in Newtonian mechanics, a naive argument for instability is the following: if we have two
objects with mass m, −m, the first will feel a repulsive force, the second an attractive one, so they will
both start accelerating in the same direction.
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The choice of sign has important consequences on the O-plane, which is then called
Op±.17 Most notably, the tension is

τOp± = ∓2p−5τDp = ∓
1

32πplp+1
s

. (1.4.49)

Both Op± are charged under Cp+1 with a charge density equaling the tension. In other
words, their effective action is

SOp = τOp

[
−

∫
dp+1σ e−φ

√
−detg |Op +

∫
Op

Cp+1

]
, (1.4.50)

to be compared with (1.3.24). Notice that the terms involving F are absent: B = 0
vanishes on the Op because of (1.4.46), while f vanishes because there are no
dynamical fields, as already observed. Other orientifold projections are possible, but
we will not need them in this book. See, for example, [111].

Dp-branes on Op-planes
Consider now Dp-branes parallel to an Op-plane, for simplicity in flat space, along
{xp+1 = 0, . . . , x9 = 0}. This configuration is BPS, just like parallel Dps. If the
branes are not atop the O-plane, then the orientifold action dictates that they should
come in mirror pairs, related by the involution Rp. So for a stack of N Dps at {xp+1 =

xp+1
0 , . . . , x9 = x9

0}, there should be a mirror stack at {xp+1 = −xp+1
0 , . . . , x9 = −x9

0}.
In this case, the gauge group on each stack is still U(N ) (see Section 1.3.6). But
for a Dp stack on an Op-plane, the orientifold action relates the open string states
to themselves, projecting some of them out. Consider, for example, the states that
give rise to the vector field, which are the parallel components of (1.3.21) with the
additional CP labels; a linear combination of such states is of the form∑

IJ

λIJba
−1/2 |0, I J〉NS . (1.4.51)

The action of Ω on ba
−1/2 |0, I J〉NS gives a minus sign. Recalling (1.4.47), the states

that survive are those such that

λ = −Mλt M−1 . (1.4.52)

Now the gauge group depends on whether we have an Op+ or Op−:

• For an Op−-plane, the sign in (1.4.48) is −1. Then M is symmetric; it can be
brought to the identity by a change of basis (λ → C−1λC, M → CMCt ). So
(1.4.52) says λ ∈ so(N ), and the gauge group is SO(N ).

• For an Op+-plane, the sign in (1.4.48) is −1, and M is antisymmetric; by a change
of basis, it can be taken to be

(
0 1N

−1N 0

)
. By definition, (1.4.52) then says that

λ ∈ sp(N ). The gauge group is Sp(N ), also known as USp(2N ).

If we start from the earlier situation with N Dp-branes parallel to the Op, and move
them on top of it, the N mirror images will also do so, resulting in 2N Dp-branes and
a gauge group SO(2N ) or Sp(N ). Sometimes one calls a pair of two mirror images
a “full” brane. A single Dp cannot be moved away from an Op and is called a “half”
brane.

17 In older literature, such as [110], this convention is sometimes reversed.
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If a Dp-brane is instead orthogonal to an Op, it is mapped to itself by the
orientifold action; the gauge group is U(N ) away from the orientifold, with some
boundary conditions on the gauge fields that depend on how many directions the
Op-plane and the Dp-brane have in common.

T-duality
T-duality acts on orientifolds as in (1.4.23) for D-branes. Under T9, an orientifold
whose spacetime involution is a reflection Rp becomes a reflection RpR9; a factor
(−1)FL is added or erased according to (1.4.45). For example, on R9 × S1,

T9 : Ω→ ΩR9 . (1.4.53)

The left-hand side Ω has no spacetime involution. The O-plane extends over all of
spacetime, so we call it an O9. On the right-hand side, on the periodic direction, x9 ∼
x9 + L9, the involution R9 : x9 → x9 has two fixed loci, at {x9 = 0} and {x9 = L9/2}.
So there are two O8-planes. If we compactify p directions and T-dualize along all of
them, we get 2p O(9 − p)-planes. The ± type is preserved by this operation, so an
O9− will generate 2p O(9 − p)−-planes. Notice that the total tension and RR charge
is unchanged, because of (1.4.49).

It is possible to include Op-planes of different types in the same model [110]. If
we have the ΩR9 orientifold above, and choose one of the planes to be O8+ and the
other O8−, and T-dualize back along x9, the result is no longer an O9, but a shift-
orientifold, defined by Ω sh, where

sh : x9 → x9 + L9/2 (1.4.54)

is the translation by half a period. This has no fixed loci, and so there are no O-planes.
This is consistent with the O8± having opposite tensions and RR charges.

Gravitational description
Even though Op-planes have a fixed position, they have a tension and charge, and
thus have an effect on the gravitational and RR fields. Given the similarity between
(1.4.50) and (1.3.24), this Op gravitational solution is formally identical to that for
Dp-branes, (1.3.59); but the constant in the harmonic function h changes, because of
the tension (1.4.49). For the Op−, (1.3.61) changes to

h = 1 − 2p−5 r7−p
0

r7−p , (1.4.55)

again valid for p < 7. (For the Op+, the relative sign is +.) The negative sign changes
the behavior of the solution: now in the region r < 2p−5r0 the function h is negative,
and the solution (1.3.59) is meaningless.18 This is in fact not worrisome because the
supergravity approximation breaks down already well outside the hole r < r0, due
to large curvature and sometimes string coupling. This unphysical hole should be
resolved in full-fledged string theory, much like what we expect for the singularity at
r = 0 for Dp-branes; we will see examples in Sections 7.2.3 and 9.4.3.

18 This should not be confused with the region inside a Schwarzschild black hole horizon, where gt t < 0
but the metric is real.
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Equation (1.4.55) can also be combined with Dp-branes, similar to (1.3.62). This
confirms that parallel Op-planes and Dp-branes are also simultaneously BPS, just
like parallel Dp.

Here are some more details:

• For p < 3, at the hole boundary r = 2p−5r0 the scalar curvature diverges,while the
string coupling goes to zero.

• For p = 3, R = 0, but other curvature invariant diverge at r = 2p−5r0. The string
coupling is constant.

• For 3 < p < 7, both curvature and string coupling diverge at r = 2p−5r0.

• For p = 7, the harmonic function is

h = 4
gs

2π
log(r/r0) , (1.4.56)

the −4 of difference with (1.3.63) for D7-branes again due to (1.4.49). The
unphysical hole is r < r0.

• For p = 8,

h = h0 − 8
gs

2πls
|x9 | . (1.4.57)

For h0 > 0, there is no hole: the dilaton approaches eφ ∼ gsh−5/4
0 . The curvature

is finite except at x9 = 0, where the second derivatives of h generate a delta
function that can be interpreted as the effect of the O8 source. This is a much
milder singularity than all the others we have encountered, especially for large h0.
However, for small h0 the string coupling is large; for h0 = 0, both dilaton and
curvature diverge at x9 = 0.

O9-plane and type I superstrings
We now focus on the O9, where the spacetime involution is the identity, which we
already encountered after (1.4.53). The fields that survive the projection (1.4.46) for
p = 9 are

φ , gMN , C2 . (1.4.58)

(The magnetic dual C6 (1.3.40) is not independent.) The fermionic fields are also
projected: only one gravitino and one dilatino remain. The branes that are still BPS
should be

D1 , D5 , D9 . (1.4.59)

The F1 and the NS5 should not be BPS, because they would be charged under B,
which has been projected out in (1.4.58). Indeed, a closed F1 is unstable toward
breaking in open strings. Ordinarily this can happen only near D-branes, but in type
I we have D9-branes, which are everywhere.

The O9 by itself has a problem: the chiral fermions have an anomaly. In IIB, this
was canceled by the contribution of C4 (Section 1.2.3), but now that field has been
projected out. A curious alternative way of noticing the problem is to focus on the
WZ term in (1.4.50), which for p = 9 gives

TO9

∫
C10 . (1.4.60)

https://doi.org/10.1017/9781108635745.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108635745.004


59 Dualities

Since C10 only appears here, its equation of motion reads 1 = 0. (This “tadpole” is
reminiscent of the one on D0s in massive IIA (Section 1.4.1).) This point of view
suggests a way out: D9-branes also have a WZ coupling to C10, and adding N of
them results in a total (N TD9 + TO9)

∫
C10. In view of (1.4.49), we need N = 16 full

D9-branes, leading to a gauge group

SO(2N ) = SO(32) . (1.4.61)

This is the gauge group for one of the heterotic theories, (1.1.44); the anomaly is now
canceled in a similar fashion as in that theory. This O9 plus 16 (full) D9 is called a
type I superstring, because the O9 breaks supersymmetry by half. The spacetime
action S is obtained from the IIB (1.2.36) by setting to zero the fields not included
in (1.4.58), BMN = C0 = C4 = 0, and adding an action for the D9–O9 system.
By Section 1.3.6, this is supersymmetric Yang–Mills with gauge group SO(32).

This finally completes the list of perturbative string theories at the beginning of
Section 1.1.

1.4.5 Heterotic dualities

In Sections 1.4.1–1.4.3, we have seen that IIA, IIB and eleven-dimensional super-
gravity are all connected by a web of dualities, which can be explained by postulating
a theory in d = 11 of extended objects called M-theory. We will now see how to
obtain from M-theory the remaining perturbative string theories, namely type I and
the two heterotic theories [112, 113].

M-theory on an interval and heterotic strings
We begin by considering M-theory on a spacetime

R
10 × I , (1.4.62)

with I an interval. In general, even in QFT, introducing space boundaries requires
care with boundary conditions; in a theory of gravity, where geometry is dynamical,
one might even worry that a boundary can be unstable and expand. In string theory,
so far we have only seen one possible spacetime boundary, the O8-plane. We can try
to introduce a boundary in a similar way in M-theory, by quotienting it.

We then view I = S1/Z2: if S1 is defined by a periodic coordinate x10 ∼ x10 +

2πR10, then Z2 identifies opposite points according to x10 → −x10. The two fixed
loci of this action, {x10 = 0} and {x10 = πR10}, are the endpoints of the interval.
Once we take the product with R10, these loci become ten-dimensional boundaries.
Unfortunately, this x10 → −x10 is not a symmetry: in the d = 11 action (1.4.4), the
CS term A3 ∧ G4 ∧ G4 is not invariant, because its definition contains an ε tensor
(similar to (1.2.19)), which picks up a minus sign under a parity. Said differently,
A3 ∧ G4 ∧ G4 only contains the index M = 10 a single time. We can cure this
problem by also reversing the sign of A3:

x10 → −x10 , A3 → −A3 . (1.4.63)

This is now a symmetry of (1.4.4), and we can quotient M-theory by it.
In the limit where the interval is small, R10 � lP11, the resulting quotient theory

will look ten-dimensional. In a KK reduction, in first approximation we can keep only
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the zero modes in x10. (1.4.63) implies that the components AMNP , M , N , P � 10,
are odd functions of x10; so the zero KK mode, which would be the constant, is
projected out. The components AMN 10 are even functions, and the zero KK mode
remains. So the ten-dimensional theory we obtain has a two-form BMN , but no three-
form. There are also zero modes for the metric and dilaton; so the d = 10 bosonic
fields are those of the common NSNS sector or of the bosonic string, (1.1.9).

Equation (1.4.63) should be supplemented by the spinorial parity action, mul-
tiplication by Γ10. The result for the zero modes is that we keep a positive-
chirality gravitino ψMα, and a negative-chirality dilatino λα̇. The supersymmetry
parameter ε becomes a single Majorana spinor ε of positive chirality; so there are 16
supercharges.

The massless fields we have found in ten dimensions so far are the same as the
first two rows of Table 1.3 for the heterotic theories. This is problematic, because as
we saw there the fermions ψMα and λα̇ give rise to an anomaly. Before taking the
limit R10 � lP11, we might think we can have no anomaly because we are in d = 11
dimension, which is odd; but there can be anomalies localized on the boundaries.
So on a spacetime boundary in M-theory, there should be degrees of freedom that
cancel such anomalies. There are two identical boundaries, and it is natural to expect
that they give the same contribution. Given that in the heterotic theory the anomaly
is canceled by the χa

α , it must then be that each of the two boundaries gives half that
contribution.

One of the heterotic gauge groups (1.1.44) is indeed a product of two copies of
E8; so the anomaly is canceled if on each d = 10 spacetime boundary there is a χa

α

in the adjoint of E8. Supersymmetry then demands that a bosonic vector field should
also be present. In other words, the remaining two lines of Table 1.3 are also present
in the spectrum, but are localized on the two spacetime boundaries, each with an E8

gauge group.
We conclude then that the R10 � lP11 limit of M-theory on R10 × I is the E8 × E8

heterotic string:

M-theory on I � E8 × E8 heterotic . (1.4.64)

M-theory on (1.4.62) can be regarded as a nonperturbative completion of heterotic
E8 × E8, much as M-theory on R10 × S1 can be regarded as a nonperturbative
completion of IIA.

Heterotic T-duality
The two heterotic theories are T-dual. To see this, we put both theories on R9 × S1.
This is more complicated than IIA or IIB on such space: the length of the S1 is
now no longer the only parameter. There is also A9, which is physical because of
(1.2.14). By a gauge transformation, we can make it lie in the Cartan subalgebra,
which for both heterotic gauge groups (1.1.44) is 16-dimensional. So we have 17
physical parameters:

(AI
9, L9) . (1.4.65)

https://doi.org/10.1017/9781108635745.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108635745.004


61 Dualities

The gauge group is broken to the commutant of AI
9. On generic points of the

parameter space, this is U(1)16; moreover, there is an extra U(1)2 coming from gM 9

and BM 9, much as in (1.1.24) for the bosonic string. At the special points where
AI

9 = 0 in either heterotic theory, this is enhanced back to

E8 × E8 × U(1)2 , SO(32) × U(1)2 . (1.4.66)

There is also a world-sheet description of such S1 compactifications [114, 115].
In Section 1.1.3, the requirements of level matching constrained the T16 for the left-
moving bosons so much that only two possibilities remained, leading to the two
heterotic theories. Compactifying one spacetime direction, we have 17 compact left-
movers and one compact right-mover; the spectrum analysis is a mix of those for the
heterotic theory and for the compactified bosonic string, (1.1.23). We now need an
(1+17)-dimensional lattice. These are all mathematically equivalent under rotations
that mix all 18 bosons, but physically we should regard as equivalent only those that
are related by rotations of the 17 left-movers. Another possible perspective is that
we should choose a single linear combination of the 17 compact left-movers to pair
with the single compact right-mover. This again gives 17 physical parameters, as in
(1.4.65). As for the gauge group, a generic (1 + 17)-lattice won’t have elements of
length two, so the generic gauge group is Abelian. For special values of the lattice,
one can obtain (1.4.66).

From the world-sheet point of view, we didn’t have to specify which of the
two heterotic theories we were discussing. Before compactifications, there are two
possibilities; after compactification, there is a 17-dimensional space of possibilities,
and each point in this space can be thought of as arising from either of the two
heterotic theories. In other words, a configuration obtained from the E8 × E8 theory
for one choice of (1.4.65) also arises from the SO(32) theory for a different choice
of parameters. In this identification, the length of the S1 gets inverted, as in type II
T-duality. In this sense, the two heterotic theories are T-dual.

Heterotic-type I duality
Earlier in this subsection, we have argued that the strong-coupling limit of the E8×E8

heterotic theory is M-theory on (1.4.62). What is the strong-coupling limit of the
SO(32) heterotic theory?

The SO(32) gauge group suggests that it might be type I. Indeed, this works at the
level of the effective action. The map is (1.4.31), applied to the fields (1.4.58) that
survive the O9 orientifold projection, and leaving the SO(32) gauge field unchanged.
In particular, the C2 potential of type I becomes the heterotic B; the D1-brane of type
I becomes the heterotic F1. We also argued after (1.4.59) that the F1 in type I is
unstable, and this is dual to the lack of D-branes in the heterotic theory.

M-theory on a cylinder
The dualities of this subsection can be summarized conveniently by considering M-
theory on

R
9 × S1 × I , (1.4.67)

sketched in Figure 1.4. This is similar to how M-theory on R9 × T2 summarizes the
dualities among M-theory, IIA, and IIB (see Figure 1.3).
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R9

R10

∞

∞0

0

Figure 1.4 M-theory onR9 × S1 × I .

We call R9 and R10 the radii of S1 and I respectively. When both are large,
spacetime is eleven-dimensional, and the best description is M-theory. When R9

is large and R10 is small, we recover the E8 × E8 heterotic string by (1.4.63). In
the figure, we have gone from the top-right corner of Figure 1.4 to the bottom-right
(from “M” to “HE”). If we now also make R10 small, naively spacetime becomes
nine-dimensional, but we argued that a T-duality can make it ten-dimensional again,
turning the theory into SO(32) heterotic (bottom-left corner “HO” in the figure).

For M-theory on R9 × T2, the exchange of the two radii was interpreted as the
S-duality (1.4.31). This exchanges the two axes in Figure 1.3 and leaves the bottom-
left IIB corner invariant, consistent with S-duality being a symmetry of IIB. For
M-theory on (1.4.67), the same operation

R9 ↔ R10 (1.4.68)

is again interpreted as an S-duality, this time relating the SO(32) heterotic theory to
type I. This is why the bottom-left corner is labeled with both theories.

The two bottom corners in the figure are related by T-duality; (1.4.68) then predicts
that the duality taking type I to the top-left corner should also be a T-duality. By
(1.4.53), this is a configuration with two O8−-planes in IIA. It is called type IA,
although it is simply an orientifold of IIA (just like type I is just an orientifold of
IIB). The 16 full D9-branes in type I are T-dualized to 16 full D8-branes. Reducing
directly from M-theory on the S1, we would have expected to find IIA on R9 × I; the
only boundaries we know in both type II theories are indeed O8-planes.

In type I, there are also 16 full D9-branes, which are T-dualized to 16 full D8-
branes parallel to the boundaries. By (1.4.23), their positions in the interval are dual
to the values of the gauge field a9 on the D9s (in the Cartan subalgebra). Going
further back in the duality chain, this originates from the values of a9 in the two
copies of E8 that live on the M-theory boundaries.

D8-branes couple to F10, the dual of the Romans mass parameter F0. When the D8
positions are generic, there will thus be a nonzero value for F0 in the spacetime on
the IA side, thus achieving a lift of sorts of massive IIA to eleven dimensions. This
map from IA to M-theory looks quite nonlocal: the position of the D8s is encoded in
the values of two gauge fields that live on the boundaries of the M-theory spacetime.
It is not obvious how to generalize this to cases without O8-planes.
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Exercise 1.4.1 Show with an argument similar to (1.3.47) that in eleven-dimensional
supergravity

1
(2πlP11)3

∫
G4 ∈ Z ,

1
(2πlP11)6

∫
∗G4 ∈ Z . (1.4.69)

Exercise 1.4.2 The M5 solution is

ds2
M5 = h−1/3ds2

‖ + h2/3ds2
⊥ , Gi jkl = 3πl3

P11xmε⊥mijklr
−5 , (1.4.70)

in the notation of (1.3.59): the parallel and transverse directions are six and
five, and h = 1 + r3

0/r3, r3
0 = πNl3

P11.
Identify periodically one of the transverse directions, R5 → R4 × S1 and

reduce along it: namely, calling the compact direction x11, write (1.4.70) in the
form (1.4.5a). Check that you obtain the NS5 solution from (1.3.65).

Exercise 1.4.3 Now reduce (1.4.70) along one of the parallel directions, and check
that you obtain the D4 solution from (1.3.59).

Exercise 1.4.4 Use S-duality (1.2.38) and (1.4.30) to derive the NS5 solution (1.3.65)
from the D5 solution (1.3.59).

Exercise 1.4.5 Now use the same S-duality to derive the back-reaction of an F1 from
the D1 solution.

Exercise 1.4.6 Finally, use the F1 solution to obtain that of an M2 whose metric reads

ds2
M2 = h−2/3ds2

‖ + h1/3ds2
⊥ , h = 1 +

r6
0

r6 , (1.4.71)

with r6
0 = 32π2 Nl6

P11. What happens if we try to obtain it by lifting a D2?
Exercise 1.4.7 Check that (1.4.46) is a symmetry of the type II actions (1.2.15) and

(1.2.36).
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