Hostname: page-component-54dcc4c588-dbm8p Total loading time: 0 Render date: 2025-09-27T17:26:29.582Z Has data issue: false hasContentIssue false

Improved bounds for Serre’s open image theorem

Published online by Cambridge University Press:  10 September 2025

Imin Chen*
Affiliation:
Department of Mathematics, https://ror.org/0213rcc28 Simon Fraser University , Burnaby, BC V5A 1S6, Canada e-mail: joshua_swidinsky@sfu.ca
Joshua Swidinsky
Affiliation:
Department of Mathematics, https://ror.org/0213rcc28 Simon Fraser University , Burnaby, BC V5A 1S6, Canada e-mail: joshua_swidinsky@sfu.ca
*
e-mail: ichen@sfu.ca

Abstract

Let E be an elliptic curve over the rationals which does not have complex multiplication. Serre showed that the adelic representation attached to $E/\mathbb {Q}$ has open image, and in particular, there is a minimal natural number $C_E$ such that the mod $\ell $ representation ${\bar {\rho }}_{E,\ell }$ is surjective for any prime $\ell> C_E$. Assuming the Generalized Riemann Hypothesis, Mayle–Wang gave explicit bounds for $C_E$ which are logarithmic in the conductor of E and have explicit constants. The method is based on using effective forms of the Chebotarev Density Theorem together with the Faltings–Serre method, in particular, using the “deviation group” of the $2$-adic representations attached to two elliptic curves.

By considering quotients of the deviation group and a characterization of the images of the $2$-adic representation $\rho _{E,2}$ by Rouse and Zureick–Brown, we show in this article how to further reduce the constants in Mayle–Wang’s results. Another result of independent interest are improved effective isogeny theorems for elliptic curves over the rationals.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bach, E. and Sorenson, J., Explicit bounds for primes in residue classes . Math. Comput. 65(1996), no. 216, 17171735.Google Scholar
Bosma, W., Cannon, J., and Playoust, C., The magma algebra system. I. The user language . J. Symb. Comput. 24(1997), nos. 3–4, 235265. Computational algebra and number theory (London, 1993).Google Scholar
Bucur, A. and Kedlaya, K. S., An application of the effective Sato-Tate conjecture . Contemp. Math. 663(2016), 4556.Google Scholar
Carayol, H., Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet . Contemp. Math. 165(1994), 213237.Google Scholar
Chênevert, G., Exponential sums, hypersurfaces with many symmetries and Galois representations. Ph.D. thesis, McGill University, 2008.Google Scholar
Cornell, G. and Silverman, J. H., Arithmetic geometry. Springer-Verlag, New York, 1986.Google Scholar
Faltings, G., Endlichkeitssätze für abelsche varietäten über zahlkörpern . Invent. Math. 73(1983), 349366.Google Scholar
Lagarias, J. C. and Odlyzko, A. M., Effective versions of the Chebotarev density theorem . Algebraic Number Fields 54(1979), 271296.Google Scholar
Lemos, P., Serre’s uniformity conjecture for elliptic curves with rational cyclic isogenies . Trans. Am. Math. Soc. 371(2019), no. 1, 137146.Google Scholar
Mayle, J. and Wang, T., On the effective version of Serre’s open image theorem . Bull. Lond. Math. Soc. 56(2024), no. 4, 13991416.Google Scholar
Oesterlé, J., Versions effectives du théorème de Chebotarev sous l’hypothèse de Riemann généralisée . Astérisque 61(1979), 165167.Google Scholar
Rodríguez, I. S., Comparing galois representations and the Falting-Serre-Livné method. Master’s thesis, Universitat de Barcelona, 2020.Google Scholar
Rouse, J. and Zureick-Brown, D., Elliptic curves over $\mathbb{Q}$ and 2-adic images of Galois . Res. Number Theory 1(2015), Article no. 12, 34 pp.Google Scholar
Serre, J.-P., Abelian $\ell$ -adic representations and elliptic curves, Benjamin, Inc., New York, 1968.Google Scholar
Serre, J.-P., Propriétés galoisiennes des points d’ordre fini des courbes elliptiques . Invent. Math. 15(1972), no. 4, 259331.Google Scholar
Serre, J.-P., Quelques applications du théorème de densité de Chebotarev . Publ. Math. l’IHÉS. 54(1981), 123201.Google Scholar
Serre, J.-P., Résumé des cours de 1984-1985 . Annuaire du Collège de France 4(1985), 8590.Google Scholar
Sutherland, A. V., Computing images of Galois representations attached to elliptic curves . Forum Math. Sigma 4(2016), Article no. e4, 79 pp.Google Scholar
Zywina, D., On the surjectivity of representations associated to elliptic curves . Bull. Lond. Math. Soc. 54(2022), no. 6, 24042417.Google Scholar