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AUTOMOBILE TRANSMISSION DESIGN AS A CONSTRAINT
SATISFACTION PROBLEM: MODELLING THE KINEMATIC LEVEL

BERNARD A. NADEL AND JIANG LIN

Computer Science Department, Wayne State University, Detroit, MI 48202, U.S.A.

This paper describes our preliminary results in applying constraint satisfaction techniques in a system we call TRANS-FORM for
designing automatic automobile power transmissions. The work is being conducted in collaboration with the Ford Motor
Company Advanced Transmission Design Department in Livonia, Michigan. Our current focus is on the design of the mechanical
subsystem, but we anticipate extending this later to the electrical and hydraulic subsystems also. For simplicity, in the initial work
reported here we restrict ourselves to the relatively well-explored class of transmissions having four forward speeds and one
reverse speed, built from two planetary gearsets, cross-connected by two permanent links. Moreover, we pursue design of such
transmissions only at the 'kinematic level'. These two restrictions correspond to limiting respectively the breadth (generality) and
the depth (detail or granularity) of the search space employed. We find that, at least for the restricted version of the problem
pursued here, transmission design is an application very naturally formulated as a constraint satisfaction problem. Our present
problem requires only 10 variables, with an average of about seven values each, and 43 constraints—making it similar in difficulty
to about the 10-queens problem. So far, two of the classic transmissions, known as Axod and HydraMatic, have been
rediscovered (at the kinematic level) by our program. Preliminary results also indicate that the constraint satisfaction framework
will continue to remain adequate and natural even when the search space is allowed to be much broader and deeper. We expect
that searches of such expanded spaces will soon lead to the discovery of totally new transmissions.

1. Introduction

The Constraint Satisfaction Problem (CSP) is
ubiquitous in Artificial Intelligence. It has received
intense study from many researchers, as seen for
example in Fikes (1970), Waltz (1975), Gaschnig
(1974, 1977, 1978, 1979), Rosenfeld et al. (1976),
Montanari (1974), Mackworth (1977a), Mackworth
and Freuder (1985), McGregor (1979), Haralick et al.
(1978), Haralick and Shapiro (1979, 1980), Haralick
and Elliot (1980), Lauriere (1978), Purdom (1982,
1983), Freuder (1978, 1982), Nadel (1986, 1989,
1990a-c, 1991a), Nudel (1982, 1983a, b), Mohr and
Henderson (1986), Dechter and Dechter (1987) and
Dechter and Pearl (1988). As might be expected,
many algorithms have been developed for solving
constraint satisfaction problems. Surveys of these
algorithms appear in Mackworth (1987), Nadel (1989)
and Shanahan and Southwick (1989). Mathematical
complexity analyses of some of these algorithms
appear in Haralick and Elliot (1980) and Nudel
(1983a).

The importance of CSP is due to the wide range of
practical problems it can be used to model.
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Applications of the standard form of the problem or a
close relative have included such diverse areas as
theorem proving (Brown and Purdom 1981; Nadel
1990ft; Van Hentenryck and Dincbas, 1986; Van
Hentenryck 1989), belief maintenance (Dechter, 1987;
DeKleer, 1986; Doyle 1979; Smith and Kelleher
1988), graph problems (Fowler et al., 1983;
McGregor, 1979; Ullman, 1976), machine vision
(Barrow and Tenenbaum, 1976; Cohen and Feigen-
baum, 1986; Davis and Rosenfled, 1981; Mackworth,
19776; Waltz, 1975), event scheduling and general
temporal reasoning (Allen, 1983; Rit, 1986; Tsang,
1987), layout and location (Eastman 1972; Navinch-
andra and Marks 1987a; Navinchandra, 1991), routing
(Shanahan and Southwick, 1989), planning genetic
experiments (Stefik, 1981), and micro-computer
system configuration (Frayman and Mittal, 1987). A
survey of some of these applications appears in
(Nadel, 1990c). A variety of natural CSP formulations
are in fact usually possible for a given real-world
application. This is discussed in Nadel (1990a).

This paper presents our preliminary results with a
system we call TRANS-FORM, that uses the CSP
framework for the apparently new application of
designing automatic automobile power transmissions.
This is a project that we have now been pursuing for
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about 6 months in collaboration with Ford Motor
Company. In particular, we have been working with
the Ford Advanced Transmission Design Department
in Livonia, Michigan, where our principal 'domain
expert' has been Robert Roethler. Much of the
following is a CSP formulation of the domain
knowledge presented to us by Mr Roethler and his
colleagues. Wherever possible though, we include
here references to the literature in support of this
domain knowledge.

Section 2 presents background material for this
work. It is divided into two parts: background on the
Constraint Satisfaction Problem, in Section 2.1, and
background on the Transmission Design Problem, in
Section 2.2. The latter discussion is rather extensive so
as to provide not only a solid foundation for the
current work, but also for its future extensions, such
as those in Nadel (19916, c). Our CSP formulation of
the transmission design problem is given in Sections 3
and 4, with Section 3 giving the CSP variables and
their domains and Section 4 giving the corresponding
constraints that we use. With the CSP formulation of
our problem in hand, in Section 5 we step back and
look at this formulation from a more theoretical
perspective, including the use of earlier mathematical
results to predict the expected number of solutions for
the class to which our problem belongs. The actual
empirical results for our problem are given in Section
6. Expected future extensions of our TRANS-FORM
system are discussed in Section 7. Some more detailed
results are provided in the Appendix. A simplified
version of this paper is available in Nadel and Lin
(1991a). A discussion of the implementation of our
system in Prolog appears in Nadel and Lin (19916).
An analysis of the complexity of solving arbitrary
constraint satisfaction problems in Prolog appears in
Nadel (19906).

Our basic result is that we have been able to
rediscover (at the kinematic level) two well-known
4R-speed' automatic transmissions, Axod (Ford
Motor Co. 1985) and the HydraMatic 700 (Ellinger,
1983). Five2 other 4R-speed transmissions (one of
which is a 4R-speed extension of the classic 3R-speed
Simpson transmission) were also found as solutions
under our present formulation. It appears that most of

1 We call a transmission nR-speed if it has n forward speeds (or gear
ratios or 'gears') and one reverse speed. The description n-speed,
without an R, refers to a transmission with n forward speeds but no
reverse.

2 In the earlier papers Nadel and Lin (1991a) and the IJCAI-91
workshop version of Nadel and Lin (19916), a total of 10 solutions
were reported, whereas here we find only seven. This is because of
a slight difference in the set of simplicity-of-switching constraints
used, as described in Section 4.3.

these other five are in fact not viable. This is not
surprising because we have not yet incorporated all
applicable constraints at the current level of
abstraction, let alone at more refined levels (increased
'depth'). Preliminary indications are that in general
such extensions will be straight-forward, except for
incorporation of the topological constraints (Nadel,
1991c) discussed briefly in Section 4.5 below.

Besides what we found, there is what we didn't find.
Several known transmissions were overlooked. Again,
this is not surprising because, in the interests of
simplicity, we have made various specializations in
formulating our search space. It seems that rather
simple extensions to our formulation will allow all
known 2-planetary transmissions to be rediscovered.
Further extensions such as allowing arbitrary numbers
of gearsets and speeds (increased 'breadth'), are
expected to lead to the discovery of totally new
transmission designs. These issues are discussed
further in Sections 6 and 7.

2. Background

Our work involves the application of constraint
satisfaction techniques to transmission design. In this
section we present background material for both
components (i) the constraint satisfaction problem and
(ii) the transmission design problem.

2.1 THE CONSTRAINT SATISFACTION PROBLEM

Constraint satisfaction problems involve three
components: variables, values and constraints. The
goal is to find all assignments of the values to the
variables such that all the constraints are simul-
taneously satisfied. More specifically, there is a set
Z = {zj z2 • • • zn} of n variables z,. Each variable takes
values from an associated finite domain dZi of mZi

values. There is a set C = {C, C2 • • • Cc) of c
constraints. A constraint C, is some way of specifying
for a given set ZjcZ of argument variables, which
values for those variables together 'satisfy' the
constraint—where values for a variable are chosen
only from the corresponding domain. Thus each
constraint C, specifies a subset 7} c D, of satisfying-
tuples from the Cartesian product Dt = XzeZ dZi of
the domains of the constraint's arguments. We call 7J
the relation induced by constraint Cy. A constraint
may thus be specified canonically as a pair
Cj = (Z, T,). But this is not to imply that CSP instances
must be given or solved in terms of such canonical
constraints. For most CSP algorithms, a constraint
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may be given in arbitrary form (algebraic equations,
inequalities, logical expressions, tables, procedures
etc.) so long as it can be implemented as a subroutine
allowing the checking of whether a given set of values
satisfies the constraint. The overall Cartesian product
D = X*,ez dZi we call the search space for the problem.
Formally, the goal in solving a given CSP instance is
to find all n-tuples in the search space D that (have
projections which) satisfy all c constraints.

There are several other parameters that are
important in understanding the complexity of
algorithms that solve constraint satisfaction problems
(Nadel, 1986, 1989, 1990a, 19916; Nudel, 1982,
1983a, b). The arity of a constraint is Aj = \Zj\, the
number of argument variables it has. The satisfiability
or looseness of a constraint is 5y = |7}|, the number of
value-tuples from D, that satisfy the constraint. This
number can be anywhere from 0 to the constraint's
Cartesian product size Mj = |D,-| = Ylz,ez " V The ratio
Rj = Sj/Mj is the constraint satisfiability ratio or
looseness ratio. It can be anywhere from 0 to 1.
Higher values of Sj and Rj correspond to looser
constraints. The size of the search space we denote by
M. Its value is given by M = \D\ = IL,ez

 mz,-
Examples of these quantities for our CSP formulation
of the transmission design problem will be given
below, in particular in Table 4.

We will see that our version of the transmission
design problem can be formulated as a constraint
satisfaction problem with exactly n = 10 variables, two
having domains of size mZi = 9 and eight having
domains of size mZ| = 6. There are c = 43 constraints,
of which eight are unary, 22 are binary and 13 are
quaternary. This is in fact a surprisingly small
problem, of about the same order of difficulty as the
10-queens problem, which under the standard CSP
formulation (Nadel, 1990a) has 10 variables, each of
domain size 10, subject to ('2

0) = 45 binary constraints.
We will also see that from the underlying search space
of over 136 million (M = 92 x 68) candidate solutions,
our problem has in fact only seven solutions. The
10-queens problem by contrast has 724 solutions
(Nadel, 1989). In Section 5 we will use a mathematical
expression based on domain sizes mZi and constraint
satisfiabilities Rj to predict that for a particular class of
instances to which our CSP formulation of transmis-
sion design belongs, the expected number of solutions
is 6.35. This is remarkably close to the actual number
of solutions, 7, found for our problem given that its
search space has over 136 million candidate solutions
and given that, as we will see, the expected value 6.35
is obtained as an average over a huge class of about
4.6 x 104218 problems.

In any case, the small size of the CSP instance

required to model our present version of the
transmission design problem means we are not
currently forced to make use of more sophisticated
CSP algorithms such as Forward Checking or various
arc consistency or path consistency techniques, but
can make do with the relatively easy-to-understand
and easy-to-implement backtracking algorithm
(Nadel, 1989; Nudel, 1983a). And implementation is
even easier if we rely on Prolog's built-in backtracking
capability and use that language to solve our CSP
instance as described for a range of applications in
(Nadel, 1990c) and specifically for our present
application in (Nadel and Lin, 19916).

In future generalizations and extensions of our
problem, the resulting CSP will become larger and we
expect more sophisticated algorithms to become
necessary. In this case, Prolog's built-in backtracking
becomes less relevant because we will require more
sophisticated approaches than straight backtracking.
Such approaches can of course be implemented in
Prolog too, but the intrinsic advantage of Prolog in
that it implicitly carries out backtracking, will be
reduced or eliminated. (A Prolog with improved
methods for handling CSP built in to the interpreter
would be useful. Such extensions to Prolog are in fact
under development, as discussed in Van Hentenryck
and Dincbas (1986) and Van Hentenryck (1989).) In
any case, we do expect that, at least in conjunction
with use of better CSP algorithms, a CSP formulation
such as that used here will successfully scale up to
handle future more complex (deeper and broader)
versions of the transmission design problem. Prelimi-
nary results already indicate that this is possible in
treating increases in depth to include a 'gear level'
(Nadel, 19916) and a 'link topology level' (Nadel,
1991c), as well as in treating increases in breadth to
include variable numbers of gearsets and transmission
speeds. The notions of search space breadth and
depth are discussed more explicitly in Section 7, in
connection with anticipated future extensions of our
work.

For those familiar with Operations Research, CSP
is closely related to linear programming, LP, and
integer programming, IP. In the terminology of LP
and IP, we are interested in generating what is known
as the feasible region. But unlike in LP, CSP per se
does not (although some extensions of CSP do)
involve finding an optimum in the feasible region.
Rather the whole feasible region is to be output. In
LP this is not even possible in principle, because the
feasible region is continuous due to the problem
variables having continuous domains of values. In
CSP it is possible since all domains are assumed
discrete and finite. Integer programming is similar in
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having discrete domains (of integers), although the
domains are not necessarily finite. So for IP too,
unlike for CSP, a listing of the whole feasible region is
not generally possible. CSP also differs from IP in that
variables are allowed to take values of arbitrary type
(not necessarily just integers nor even numbers) and
constraints accordingly may be of arbitrary type rather
than just linear inequalities. Even though the feasible
region is finite in our CSP formulation of transmission
design, and may thus be fully listed explicitly, it is
nevertheless natural (as in many other applications of
CSP) to seek an optimum in the feasible region.
However, the preliminary formulation described here
does not consider optimization issues. Later formula-
tions probably will. This is discussed further in Section 7.

2.2 THE TRANSMISSION DESIGN PROBLEM

2.2.1 A utomatic transmissions
An automobile must deliver torque or 'turning

power' from the engine, via what is called the drive
train, to the driving wheels. In rear wheel drive
vehicles the drive train consists of a transmission, a
drive shaft and a rear axle assembly, whereas in front
wheel drive vehicles all these components are
integrated in a transaxle assembly.

In either case, the basic component of the drive
train is the transmission. It acts as a torque
multiplying (and dividing) device for adjusting the
amount and direction of torque delivered from the
engine to the drive wheels under varying engine
operating conditions and driving conditions. The
torque multiplication factor is known as the
transmission's gear ratio. A manual transmission
requires the driver to control the gear ratio manually,
via countershaft gears. These are sets of gears on two
parallel axes. In their simplest form, change of gear
ratio is achieved by sliding the axes relative to each
other so as to cause different pairs of gears to engage.
On the other hand, automatic transmissions, with
which we concern ourselves here, determine the gear
ratio automatically, and usually use planetary gearsets
rather than countershaft gears. As will be described in
more detail below, a planetary gearset is a
combination of sun, ring and planet gears arranged
somewhat like a miniature solar system. Good
introductions to automatic transmissions and plane-
tary gearsets are found in Ellinger (1983), Husselbee
(1986) and Juvinall (1983). A more advanced
treatment can be found in Miiller (1982). Compared
to manual transmissions:

• Automatic transmissions have the obvious ad-
vantage of being easier to use.

• As mentioned in Husselbee (1986) automatic
transmissions also have several other advantages.
In (at least the earlier versions of) manual
countershaft transmissions, un-meshing and re-
meshing of gears is required in order to change
gear ratios. This leads to the possibility of gear
teeth damage due to 'crunching' the gears during
partial engagement or because of improper
shifting techniques. In automatic transmissions
the ratio is changed simply by changing which
components of the planetary gearsets are 'input',
'output', 'braked' and 'linked' (as we will see
below), thus allowing the gears of an automatic
transmission to stay in constant mesh. Gear
crunching is thus eliminated.

• The above constant-mesh feature of automatic
transmissions allows quick ratio changes, avoiding
the loss of torque flow which may be experienced
during gear changing in manual transmissions.

• Automatic transmissions are stronger for a given
size, since they distribute the torque load over
more gears.

• Automatic transmissions are more compact due
to the coaxial nature of the planetary gearsets.

An automatic transmission may be considered as
made up of three interrelated subsystems: a
mechanical, a hydraulic and an electronic subsystem,
the latter two subsystems being for the purpose of
controlling the former. Our current work concentrates
only on the design of the mechanical subsystem of
automatic transmissions. We expect to extend this to
an integrated treatment of the design of all three
subsystems in the future.

2.2.2 Planetary gearsets
Most automatic automobile transmissions are made

from various combinations of various types of
planetary gearsets. We assume here that only simple,
as opposed to compound, planetary gearsets are used.
A description of compound gearsets is beyond the
scope of this paper. See for example Husselbee (1986)
or Lynwander (1983). Figure 1 shows an example of a
simple planetary gearset with four planets. (Figure 2
shows an abstraction with three planets.) The planets
p are attached to an arm a which can rotate with the
planets about a central sun gear s. In doing so, the
motion of the planet gears is analogous to that of
planets in a solar system, which is of course the reason
for the name planetary gearset. Each planet rotates
about its own center as the group of planets on the
arm revolves about the sun. At the perimeter of the
gearset is a ring gear r whose teeth are on the inside
so as to mesh with the planets. Normal gears like the
sun and planet gears, where the teeth point outwards,
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from view side view

planet gear

Ring, sun and planet
pitch circles

FIGURE 1. A planetary gearset with four planet gears. There are Ts = 18 teeth on the
sun, Tp = 6 on each planet and Tr = 30 on the ring. Note that the corresponding pitch

circle diameters have the same ratios as the teeth numbers

are called external gears. Gears like the ring, where
the teeth point inwards are called internal or annulus
gears.

Several different circles characterize an individual
gear (Juvinall, 1983). There is the dedendum circle,
the base circle, the pitch circle and the addendum
circle. The dedendum circle joins the bottoms of the
'valleys' between teeth. The addendum circle joins the
'peaks' of the teeth. The other circles fall in between.
For the purposes of kinematic analysis we may model
a pair of meshing gears by an equivalent pair of
cylinders pressed together which can turn each other
via friction without slippage. The pitch circle of a gear
may be thought of as the cross section of the
corresponding cylinder in such a pair of kinematically
equivalent cylinders. Pitch circles are shown for the
component gears in Figure 1. It is the diameter D of a
gear's pitch circle—the gear's pitch diameter—that is
the relevant diameter for kinematic analysis. For
instance, two meshing gears with fixed centers have
angular velocities inversely proportional to their pitch
diameters.

The constant of proportionality between the
number of teeth T on a given gear and its pitch
diameter is called the gear's diametral pitch, which we
denote as a. Thus we have T = aD. It should be clear
that for two gears to be able to mesh they must have
the same number of teeth per unit of their
circumference, and hence per unit of their diameter.
Thus for the sun (s), planet (p) and ring (r) gears of a

single planetary gearset, we have
Ts = aDs, Tp = aDp, Tr = aDr,

all for the same constant a (1)

The value of a is thus fixed for all gears in a given
gearset, so that a is as much a parameter of a gearset
as it is of a gear in a gearset. However, different
gearsets may of course have different values of a.

An important parameter for our purposes will be
the ratio of the number of teeth Tr on the ring to the
number of teeth 7̂  on the sun in a gearset,

P = Tr/Ts. (2)
In the transmission of Figure 1 for example, the value
of this parameter is /? = 30/18 = 1.666. We will see
below (in connection with Figure 7) that the
assumptions we make in the current formulation of
the transmission design problem allow gearsets
corresponding to 7/5</3<7/2. For discussion pur-
poses we will often use the nominal value of /J = 2
within this range (as for example when giving the
approximate numerical values for gear ratios p in
Tables 1, 2 and 3 below). Note also that the following
relationship (obvious from Figure 1) holds between
the pitch circle diameters of component gears in a
planetary gearset:

D, = DS + 2DP. (3)

2.2.3 Equations of motion for a planetary gearset
A basic requirement in meshing gears (whether in a

planetary gearset or not) is that the tangential
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FIGURE 2. Linear and angular velocities in a planetary gearset

velocities of the points of contact must be equal. From
this we can derive the equations of motion for the
components of a planetary gearset. Figure 2 provides
the notation we will use.3 The circles shown there are
the pitch circles for the sun, planet and ring gears of
the gearset. As such, points A and A' should touch,
as should points B and B'. The circles are shown
separated only to help in the following discussion
where we need to distinguish between touching points
on different meshing gears.

Let (os, o)a, a)r and cop denote the angular velocity
(in radians per second) of the sun, arm, ring and
planet of a gearset. (All planets have the same angular
velocity.) These angular velocities are relative to the
frame or housing of the gearset and may be
considered as absolute angular velocities. On the other
hand, let a>pa be the relative angular velocity of the
planet with respect to the arm of the gearset, so that

cop (4)

The arc length x spanned by a radius of length r
rotating through 6 radians is x = rd. Dividing both
sides by the unit of time, we have that the speed v of
the tip of a radius of length r rotating at uniform
angular velocity (o is v = rco. Thus relative to the arm,

3 Note that the arrows in Figure 2 are drawn so as to point in the
corresponding positive directions, which in our convention is
rightwards for linear velocities and clockwise for angular velocities.
The arrows are not intended to show the actual direction of motion
of the corresponding parts. The actual directions of motion are
obtained from the signs of the corresponding values when the
equations of motion are solved. If the motion is in the opposite
sense to that shown by the arrow then the velocity value will be
negative.

point B on the planet has velocity vpa = Rp(opa.
Similarly, the arm itself at the point corresponding to
B is moving at velocity uf = Rs(oa. Using for linear
velocities the counterpart of the angular velocity
relation (4), we may express the absolute velocity of
point B as vp

J = v% + vpa = Rscoa - Rpo)pa, where the
negative is due to the opposite senses of the two
component velocities. Point B' on the sun has
absolute velocity vf = Rso)s. Since B' and B denote
meshing points, their velocities must be equal, so that
vf = Vp and hence Rs(os = Rso)a - Rp(opa. A similar
analysis regarding the speeds of points A and A' leads
to Rr(or = Rro)a + Rp(Dpa. Using (1) we may re-express
the latter two equations in terms of teeth numbers
Tj = aDj = 2aRh the same a for each gear i = s, p, r.
We thus obtain

- Tscoa Tp(opa = 0

and

(5)

(6)7 > a - Tr(or + Tpoipa = 0.

From these we have

7 X + ( - Tr - Ts)(oa + Tr(or = 0 (7)

and
Tso)s + (-Tp- Ts)(oa p = 0 (8)

in terms of only the absolute angular velocities a>s,
a>a, a>r and a>p, without the relative velocity u>pa.
Equation (7) is obtained by subtracting (6) from (5),
and (8) is obtained from (5) by using (4) to eliminate

v/7fl*

2.2.4 Kinematic states of a planetary gearset
A planetary gearset provides the basis for a

remarkably flexible mechanism for changing angular

https://doi.org/10.1017/S0890060400002651 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400002651


Automobile transmission design 143

velocity (and torque). There are many combinations
of motion possible, all of which may be understood in
terms of the equations of motion (7) and (8).
However for our purposes the cases of interest are
only those where one of the component parts, sun s,
arm a or ring r is linked to an input torque
(corresponding to the vehicle's motor), one of the
other two parts is held fixed or grounded or braked
and the third part is used to drive an output
(corresponding to the vehicle's wheels). Note that this
excludes the possibility of the planets being linked to
input, being braked or being linked to output. In
principal this is also possible, but in practice it is
usually not of interest due to the difficulty of building
a housing for the planetary gearset which allows these
operations on planets per se, since the latter not only
rotate on their axes but revolve about the sun while
doing so. On the other hand, the sun, arm and ring
simply rotate about their common axis. It is thus
relatively straightforward to build a housing which
allows co-axial input to, output from or braking of,
the sun, arm or ring, but not the planets. Thus in
automobile transmissions the planets of a gearset are
used just as intermediaries to transfer motion between
the other components.4

In choosing a gearset component s, a or r to use for
input there are three possibilities, for each of which
there are two possibilities in choosing the remaining
component to hold fixed, for each of which there is
only one possibility for choosing the remaining
component to use as output. The corresponding
3 x 2 x 1 = 6 configurations are shown as cases 1 to 6
in Table 1. (Cases 7 and 8 shown there will be
discussed later.) The diagrams used to denote
planetary gearsets in Table 1 and in other tables
below, are intended as schematics of the top half of
the side view of a planetary gearset such as shown at
the right in Figure 1. Note however that, unlike in
such a top-half gearset side view, the middle squares
of our schematic diagrams do not denote a planet per
se, but rather the arm which connects to planets. The
schematic diagrams use inwards and outwards arrows
to denote the input and output components
respectively, and use gray shading to denote the
braked component.

As seen in Table 1, each of the states 1 to 6 results
in a different gear ratio p = (O0ul/coln, the ratio of the

4 An interesting contrast occurs however in the transmission of say a
mixing machine. In such a case the rotation plus revolution of the
planets is a very natural motion for stirring, which it is not even
necessary to build an actual hardware link to capture. The motion
may simply be passed on to the stirred mixture directly via paddles
connected to the planets' centers. In such a case planets could be,
and are, conveniently used for output.

angular velocity of the corresponding output com-
ponent Out to that of the input component In. These
ratios may be obtained by use of equation (7) in
conjunction with two other simple equations charac-
terizing the input and the braked components.
Equation (8) is superfluous for our purposes since we
are not interested in the angular velocity cop of the
planets.5 We are interested in only the three
unknowns ios, coa and (or, the angular velocity of the
sun, arm and ring respectively. We may obtain three
linear equation in these three unknowns as follows.
The first equation is (7) as mentioned (where for the
versions in Table 1 we have divided through by 7̂  to
give the coefficients in terms of /3 = Tr/Ts). It
characterizes the overall planetary gearset itself, not
any particular state, so it is part of the characteriza-
tion of each of the states in Table 1. The second
equation characterizes the braked component. In state
1 of the table for example this is the arm. Since the
arm is braked it has zero angular velocity, and we may
thus add the corresponding equation a)a = 0. The third
equation characterizes the input component. In state 1
this is the sun gear. We can then write ms = c, where c
denotes the input velocity of the sun. Since we are not
interested in the case of any specific input velocity,
but rather in the ratio of output velocity to input for
arbitrary input velocity, we may as well use c = 1.
Using (o,n = c = 1 is convenient as it allows a gear
ratio to be obtained as p = co0u,/co,n = oi0jl = co0u,-

6

We thus have for state 1 the three equations

(oa = 0

It is these equations written in matrix form which
appear in the 'Kinematic Equations' column for state
1 in Table 1. The other states' equation sets are
obtained similarly. Solving these equations for the
angular velocity of the respective output components
(remember p = (0Oul) leads to the expressions shown
in the table for gear ratio p(j3) as a function of p\

5 However, in a graphics program that we have written to animate
the motion in planetary gearsets, equation (8) did come in handy
because there it was necessary to solve for the angular velocity of
the planets also so as to allow a complete animation. In our later,
more-detailed design work as well equation (8) will become relevant
since a full design must satisfy constraints on the maximum speed at
which each gearset component, including the planets, may turn so
as not to overload its bearings. This type of constraint is not
considered in our current formulation.

6 Leaving c arbitrary would give the same ratio of output to input
velocity, but less conveniently. The output velocity would simply be
obtained as a function of c, and c in the numerator and
denominator of p = (0OuJwln would cancel in obtaining the ratio.
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TABLE 1. Gear ratios achievable using a single planetary gearset. States 7 and 8 represent two different approaches
to achieving direct drive

State

1

2

3*

4

5*

6

7

8
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s a r
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Kinematic Equations
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Gear Ratio p = ^2£
Win

- I « -1/2

TT^ - 1/3

^ « 3 / 2

1 + /3 « 3

A " 2/3

-/J « - 2

1

1

Ratio Type

reverse
underdrive

underdrive

overdrive

overdrive

underdrive

reverse
overdrive

direct drive

direct drive

States 3 and 5 (*) are respectively the overdrive and underdrive states of the classic 3-speed Sturmey-Archer bicycle transmission.

Note that unlike the choice of input and braked part,
the choice of output part does not effect a state's set
of equations per se. But it does of course effect the
gear ratio for a state by determining which solution,
(DS, coa or (or, of the equation set will be used to
obtain p = (oOut.

Our algorithm will search over the feasible
kinematic states for a transmission and for each of
these will dynamically generate a corresponding set of
simultaneous equations like those in Table 1 (but for a
transmission made of two linked gearsets, as will be
discussed). Each equation set generated is solved
symbolically to obtain the corresponding symbolic
expression for p, analogous to those in Table 1.
Substituting a numerical value for /8 would of course
allow us to obtain numerical p values for checking say
if an acceptable ratio value is achieved for a given

speed. Besides giving the gear ratios p(/3) symboli-
cally, Table 1 also gives corresponding example
numerical values using the nominal value of /3 = 2.
This is within what we will see is our allowed range of
7/5^)3^7/2. At this stage of our formulation
however, our algorithm does not consider numerical
values for /3 or p, but reasons directly with the
symbolic p expressions, as will be described below in
connection with (14).

Negative values for p correspond to reverse gear
ratios: the direction of rotation between input and
output is reversed. Values of p over 1 correspond to
overdrive gear ratios: the angular velocity of the
output is greater than that of the input. Values of p
under 1 correspond to underdrive gear ratios: the
angular velocity of the output is less than that of the
input. A value of p equal to 1 corresponds to a direct
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drive gear ratio: the angular velocity of the output
equals that of the input. We see from Table 1 that a
single planetary gearset is capable of delivering quite a
range of gear ratios: two reverse ratios, two
underdrives, two overdrives and a direct drive, the
latter being achievable in a variety of ways. States 7
and 8 are representative of two different approaches
for achieving direct drive.

The first approach, represented by state 7, is to use
for the output the same component as is used for
input. Note that the three equations characterizing a
state do not reflect the choice of output component.
They only reflect the choice of input and braked
components. Thus for example, since state 7 has the
same input and braked components as state 5 in the
table, the corresponding equations are the same. The
only difference between the states is in the choice of
output, which in terms of the equations is reflected
only as a difference in which variable is being solved
for. In state 7 for example we are solving for a>r,
rather than a)a in state 5. Of course situations like
state 7 are degenerate cases, since the ratio of output
to input velocity is the ratio of the output velocity to
itself.

The second approach to obtaining direct drive in a
planetary gearset is represented by state 8 of Table 1.
Here we are allowing an added link between the arm
and the sun so that they rotate in unison; formally this
link is represented by the equation a>s = coa or
(Ds - (oa = 0. In this added-link approach, there is no
need for a braked component in order to get a well
defined system, since we already have three equations
in three unknowns given that one of the components
is used for input. This can be seen for our example in
the table's equations column for state 8. One equation
characterizes the gearset per se, one the link and one
the input. Note there is no shaded square for a braked
component in the state 8 diagram.

A little thought shows that when there is a link
between any two of the sun, arm and ring
components, the gear ratio will always be 1, no matter
what are the two linked components and no matter
what component is used for output. Since there are so
many ways of achieving direct drive, via either of the
approaches represented by states 7 or 8, we have not
bothered to require a direct drive state in the
transmissions we are currently designing. We are in
effect assuming that any solution which satisfies the
other constraints on gear ratios etc. can be extended
to have a compatible direct drive state. Later
formulations will not make this assumption, but it is a
useful and relatively innocuous simplification at this
stage.

Note that when we do, in later work, consider

explicit direct drive states to incorporate into our
designs, the approach represented by state 8 of Table
1, where an extra link is used, has several advantages
compared to that represented by state 7, where the
output component is simply set to the input
component. When the added-link approach is used
the various components, including the planets, all
become locked together and rotate in synchrony, so
that cos = coa = cor = (op. This can be seen from solving
the corresponding kinematic equations such as those
for state 8 in Table 1. [Equation (8) is needed in
verifying the above equality for mp.] However, when
the input-equals-output method is used to obtain
direct drive, the component that is not input/output
or fixed must rotate relative to the other two
components, again as can be seen from solving the
corresponding kinematic equations such as those for
state 7 in Table 1. The added-link approach
represented by state 8 thus locks the parts to rotate
synchronously whereas the approach of state 7 allows
relative motion. The former approach is preferable
since the lack of relative motion of the parts (i)
reduces gear noise, (ii) reduces gear wear and (iii)
improves the power transfer efficiency due to heat,
noise and general friction losses being reduced.

2.2.5 One-planetary transmissions
Though, as we have seen, a single planetary may

provide quite a range of different gear ratios, it is not
in itself a transmission. A transmission must also
provide the hardware for switching between the
desired kinematic states provided by one or more
planetary gearsets. It is not in fact topologically
possible to build a switching mechanism capable of
using all seven ratios provided by a single planetary.
Figures 3 and 4 are examples of single-planetary
transmissions that are topologically realizable. Note
the characteristic addition to the gearset per se, of a
network of clutched links and brakes for reallocating
which element is input, output and braked. The 3/4
squares fl shown in these transmission 'stick diagrams'
denote clutches, which may be thought of as simply
switches for connecting the two parts of the
corresponding path (shown by a line) to allow flow of
torque along it. The tables at the right of the
transmission stick diagrams include columns denoting
which clutches are on in achieving the transmission's
various subsumed states/speeds/ratios. Corresponding
to each clutching pattern is an 'Effective Transmission'
diagram denoting the effective torque pathways
achieved by that clutching configuration. And each of
these is shown with the corresponding designation of
the input braked and output component, and the
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FIGURE 3. A Sturmey-Archer-like 3-speed transmission based on a single planetary gearset, using a common part for
input and output to obtain direct drive
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0 under
1 +/? drive
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drive
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FIGURE 4. Another Sturmey-Archer-like 3-speed transmission based on a single planetary gearset, using a clutched
(or soft) link to obtain direct drive

corresponding gear ratio and ratio type, in a manner
similar to that of Table 1.

We see that both transmissions incorporate states 3
and 5 of Table 1 for their overdrive and underdrive
states respectively. The transmissions differ in which
state they use for direct drive. This difference imposes
the need for a different switching network, as seen.
Nevertheless, the two transmissions are very similar.
We call two transmissions functionally equivalent if
they incorporate the same set of gear ratios. We say
they are kinematically equivalent if in addition the
same kinematic states (input, output and braked
components) are used for corresponding ratios. The
transmissions in Figures 3 and 4 are functionally
equivalent but not kinematically equivalent. They are
in fact functionally equivalent to the classic Sturmey-
Archer 3-speed bicycle transmission (Hadland, 1987),
and kinematically equivalent to it, and to each other,
in all but the direct drive state. They are
'kinematically equivalent modulo direct drive'.

As mentioned earlier, the approach of state 8 of

Table 1 is preferable to that of state 7 in achieving
direct drive, since it reduces gear noise, gear wear and
improves power transfer efficiency for that gear ratio.
In this sense the transmission of Figure 4 is preferable
to that of Figure 3. On the other hand, that of Figure
3 is preferable in having less clutches, and thus being
cheaper to build and easier to maintain. But the
transmission of Figure 4 may be simplified (to a
version that is kinematically equivalent modulo direct
drive) while still retaining its advantage of using the
added-link approach to achieving direct drive. One
could for instance just remove clutch C5 and its path
completely, and obtain direct drive by turning on
clutches Cl, C2 and C3 simultaneously, rather than
Cl, C3 and C5 as now. This simplifies the
transmission from six clutches to five, but the
transmission of Figure 3 is still preferable in having
even less (four) clutches, although it is worse in noise,
wear and efficiency as mentioned.

The above issues of simplification of the switching
network in a transmission, the reduction of noise,
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wear and inefficiency, and the trade off between these
is an example of the multi-criteria optimization which
needs to be addressed in the full version of the
transmission design problem. We do not pursue any
optimization in our present formulation. In fact, the
particular issues of complexity of switching network,
gear noise, gear wear and power transfer efficiency do
not even arise at the level of abstraction at which we
are currently treating transmission design. In particu-
lar, we ignore the switching network, the specific
nature of the direct drive state, and the number and
shape of gear teeth (the latter two parameters have an
effect on gear noise, wear and transmission efficiency
when there is relative gear motion whether in direct
drive or other states).

As indicated in Figures 3 and 4, the various
kinematic states of a transmission are naturally ranked
according to the magnitude of their gear ratios and are
said to be of successive 'speeds'. The transmissions in
Figures 3 and 4 for example have three speeds, from
speed 1 for the underdrive state, through speed 2 for
the direct drive state, to speed 3 for the overdrive
state. In automobile transmissions we will also want a
single reverse speed, which we denote as speed 0.
There were no reverse speeds in our examples of
Figures 3 and 4 because the Sturmey-Archer
transmission on which they are based is a bicycle
transmission, and people don't usually want to ride
backwards on bicycles. In automobiles of course, a
reverse gear is desirable. Some vehicles such as trucks
and tractors may even have several negative gear
ratios of different magnitudes, and hence several
reverse speeds or reverse 'gears'. As here, the term
gear is often used for speed or gear ratio. This is of
course a different sense of the word than when talking
about the physical gears of say a planetary gearset.
Context should clarify the sense intended.

The transmissions of Figures 3 and 4 provide
examples of another issue relevant in transmission
design, simplicity of switching. This refers not to the
above-mentioned simplicity of the switching network
per se, but rather to the simplicity of the changes in
clutching pattern needed to go between successive
speeds of the transmission. We leave the discussion of
simplicity of switching to Section 4.3 below. Suffice it
to say here that the transmission of Figure 3 is
preferable to that of Figure 4 (and also to its
network-simplified version discussed above) in terms
of simplicity of switching (as well as in terms of
simplicity of the switching network). In fact, as we will
see, neither version of the Figure 4 transmission
satisfies even the minimal simplicity-of-switching
constraints which we are currently using.

Note that in building a transmission which

incorporates various states it is desirable to have the
same member (sun, arm or ring) acting as output in
each state. (Actually, we will see in Section 3.3 that it
is undesirable to allow output from a sun gear.) This is
because the output is where relatively large torques
can occur in an automobile transmission; an
automobile's engine always rotates at relatively high
speed but low torque, whereas when climbing a steep
gradient say, the wheels may rotate slowly but with
high torque. To allow for the inevitable situations
when the output does involve high torque, it is best to
have the output component linked to the wheels by a
relatively sturdy permanent or 'hard' link rather than
by a relatively weak temporary or 'soft' link achieved
via clutching. Thus one prefers to achieve the
necessary range of transmission ratios by using
clutches to vary which are the input and braked
components rather than to vary which member is the
output component. In the transmissions of Figures 3
and 4 this was not actually the case, but again this is
because the Sturmey-Archer transmission, on which
they were based, is intended for bicycles where the
required torque is never great anyway. For auto-
mobile transmissions on the other hand torques are
much larger so that having a fixed output component
becomes important.

But from Table 1 we see that with no fixed choice of
output member does one achieve a useful distribution
of ratios (even counting the direct drive ratio of 1). If
the sun is the fixed output, we get no underdrive ratio.
If the arm is the fixed output, we get no reverse or
overdrive. If the ring is the fixed output, we get no
(forward) underdrive. To provide a wider choice of
states so that the output may be fixed without losing
needed ratios and/or so that topological incom-
patibilities may be avoided in combining needed
ratios, we need a more flexible transmission than can
be built from a single planetary gearset. Transmissions
made of two or more coupled gearsets give us this
extra flexibility.

2.2.6 Kinematic states of two linked planetary
gearsets

Coupling together two or more planetary gearsets
provides a wider range of achievable kinematic states
and gear ratios and hence more flexibility in satisfying
constraints and/or in achieving a better optimum, in
designing a transmission. In automobiles, transmis-
sions with two and three gearsets are common. For
our present initial study we restrict ourselves to two
gearsets, which we distinguish as gearset 1 and gearset
2. Their relevant component sets are respectively
Parts1 = {si, al, rl} and Parts2 = {s2, a2, r2}, where
si, ai and ri of course denote respectively the sun, arm
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and ring of gearset i. Note the absence of planets in
these sets, as discussed in connection with footnote 4
p. 143. For the purposes of ordering our computer
search we assume that these six components of our
two gearsets have the following (purely arbitrary)
relative ordering

sl< fll< r\< si < al < rl. (9)

In linking two gearsets together it is possible to use
various numbers of hard (or permanent or non-
clutched) links. We currently restrict ourselves to the
case of exactly two hard links. Such a pair of hard
links may be configured in many ways. We will see
later (in connection with Figure 8) that of these, there
are only 18 pairs that satisfy the constraints of our
domain. Tables 2 and 3 correspond to two of these 18
cases. Table 2 is for the two hard links LI = (si, si)
and L2 = (al, r2), and Table 3 is for the two hard

links LI = (al, rl) and L2 = (rl, a2), where
Li = (x,y) denotes a link between components x and y.

For each of the 18 acceptable ways of connecting
two gearsets with two hard links there are many more
non-direct-drive gear ratios achievable than only the
six seen in Table 1 to be available with a single
gearset. With two gearsets, there are in fact six
non-direct-drive ratios for each choice of output
component, as explained below in Section 4.2 (after
Q). Tables 2 and 3 show states corresponding to the
six such ratios for the fixed output of Out = r2. These
results are extended in the appendix, where the
corresponding six states are given for each of the 18
legal hard link pairs.

Tables 2 and 3 are analogs of the earlier Table 1,
and give essentially the same type of information.
Note however the difference in the kinematic
equations that need to be solved in obtaining the gear

TABLE 2. Gear ratios achievable using two planetary gearsets with two links LI = (si, s2) and L2 = (al, r2), and
fixed output Out = rl (or al)
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Unlike the single gearset case in Table 1, here reverse, underdrive and overdrive are all achievable even with the output fixed.
States 2, 3 and 4 (*) are respectively the reverse, high underdrive, and low underdrive states of the classic Simpson 3R-speed
automobile transmission.
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ratio for a state. In the one-gearset case of Table 1
there were only three equations in three unknowns,
whereas in the two-gearset case of Tables 2 and 3
there are six equations in six unknowns. The doubling
of the number of variables is because now there is a
sun, arm and ring gear for each of two gearsets, rather
than just for a single gearset, and for each of these six
parts we need to solve for its angular velocity. That is,
we now have variables (osi, coai and o)n for both i = 1
and i = 2, rather than just (os, wa and cor.

Since there are six variables now, we require six
equations for a well-defined system. As before we use
equation (7) to characterize a gearset, but since there
are now two gearsets we need a version of (7) for each
gearset—each version of course being in terms of the
corresponding gearset's three variables. Thus we have

Tsicosi + (-TrX - TsX)o)aX + Trl(orl = 0.

Ts2(os2 + ( ~ Tr2 - Ts2)(oa2 + Tr2cor2 = 0.

These two equations apply, and appear in the
kinematic equations column, for every state in Tables
2 and 3 since all the states involve the corresponding
two gearsets. As in Table 1, in Tables 2 and 3 these
two equations are divided through by Tu and Ts2

respectively so that the coefficients are in terms of the
ratios

and p2=TjTs2, (10)

the gearset 1 and 2 counterparts of /3, the single
gearset ring-to-sun tooth-ratio defined in equation (2).
The remaining four equations for a two-gearset state
reflect its unique combination of hard link pair, input
part and braked part. Table 2 is for the case of hard
links Ll = (sl,s2) and L2 = (al,r2). The first link
restricts the angular velocity of si to equal that of s2,
which contributes equation cosi = a)i2 or equivalently
°>si ~ w^2 = 0. Similarly the second hard link contrib-
utes (oaX — cor2 = 0. All states of Table 2 have these

TABLE 3. Gear ratios achievable using two planetary gearsets with two links LI = (al, rl) and L2 = (rl, «2), and
fixed output Out = rl (or al)
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States 3, 4, 5 and 6 (*) are respectively the high underdrive, overdrive, low underdrive and reverse states of the Axod 4R-speed
automobile transmission. States 1, 2, 4 and 6 (t) are respectively the low underdrive, high underdrive, overdrive and reverse states
of the HydraMatic 700 4R-speed automobile transmission.
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two as their third and fourth equations because all
these states are for the same hard link pair. Similarly,
all states of Table 3 have the equations coal — cor2 = 0
and (Wrl - u>a2 = 0, due to their common hard link pair
being LI = (al, rl) and L2 = (r l , al).

The last two equations for a state correspond to its
input and braked part in the usual way. For instance,
since state 1 of Table 2 has braked and input parts rl
and s i respectively, we add the corresponding
equations con = 0 and a>sl = 1. In this way, we obtain
for this state the following complete set of six
equations in six unknowns

o,i + ( -0 , -

wsl -<us2

toa

=0

) r 2 = 0

=0

— (0,2 = 0

=0

As in Table 1, this set and its analogs for the other

states appear in matrix form in Tables 2 and 3. It is
these sets of simultaneous linear equations that are
solved to obtain the expressions for the gear ratios p
for the states. It is interesting to note that, in spite of
using different ways of cross linking the two gearsets,
the set of gear ratios of Table 3 are the same as those
of Table 2.

2.2. 7 Two-planetary transmissions
Section 2.2.5 discussed how transmissions could be

built from a single planetary gearset with the addition
of a switching network to allow incorporation of a
range of the gearset's kinematic states. The latter
single-gearset states were treated in Section 2.2.4.
Analogously, the present section considers transmis-
sions built from two linked planetary gearsets so as
incorporate the two-planetary kinematic states of
Section 2.2.6.

Figures 5 and 6 show how the two-planetary linking
schemes of Tables 2 and 3 may be coupled with
switching networks to obtain the well-known Simpson
transmission (Ellinger, 1983; Husselbee, 1986) and
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FIGURE 5. A 3R-speed Simpson transmission based on two planetary gearsets. State numbers refer to Table 2
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FIGURE 6. A 4R-speed Axod transmission based on two planetary gearsets. State numbers refer to Table 3
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Axod transmission (Ford Motor Co., 1985) respec-
tively. (Note the swap in placement of gearsets 1 and 2
in making the correspondence between the states of
Table 3 and the Axod transmission of Figure 6. This is
allowed because we have not made any real
distinction between gearsets 1 and 2 other than in
their names.) The Simpson transmission has three
forward speeds and a reverse, while Axod has four
forward speeds and a reverse. Unlike the Sturmey-
Archer transmissions of Figures 3 and 4, the Simpson
and Axod transmissions both achieve their set of gear
ratios with a fixed output part Out = rl. As mentioned
in Section 2.2.5, this was one of our motivations in
going from a single-gearset transmission to the greater
flexibility of a two-gearset transmission.

Note that the Axod transmission provides exactly
the same ratios as the Simpson, plus an additional
overdrive ratio (1 + /32)//32. Since the Simpson linkage
scheme of Table 2 also provides this overdrive ratio
through state 5 there, one might expect that an
'extended Simpson' transmission could be built that
adds this state 5 to those of the standard Simpson
transmission in Figure 5. However, in practice such an
extended Simpson transmission is not realizable
because of topological constraints on the switching
network that is needed. An extended Simpson
transmission is in fact found by our algorithm, but
only because we have not yet implemented the
necessary topological constraints. The Axod trans-
mission is also correctly rediscovered. (Both these will
be seen in Figure 9 and Table 5 below.) We now look
at how the automated discovery of these transmissions
is made possible by formulation of the transmission
design problem as a constraint satisfaction problem.

3. Variables and their domains

This section describes the variables and their domains
of candidate values that we employ in formulating
transmission design as a constraint satisfaction
problem. The section after this will treat the
corresponding constraints used. The domains and
constraints given correspond to common practice in
designing full-sized passenger vehicles in the United
States.

Regarding breadth of our search space, remember
we are restricting ourselves here to 4R-speed
transmissions involving two planetary gearsets, cross
linked by two hard links and no soft links. As for the
Axod transmission of Figure 6, our transmissions will
have one reverse speed, a low underdrive, a high
underdrive, a direct drive and an overdrive. These
speeds are denoted respectively by index values i = 0,

1, 2, 3 and 4. More generally, we use index value i = d
to denote direct drive and / = n for the highest speed.

Regarding depth of our search space, for simplicity
we currently ignore quite a few features of real
transmissions. In particular, we do not consider the
nature of the direct drive state nor the neutral state of
our transmission designs. Nor will we be considering
the topological or geometric nature of the paths
linking gearsets between themselves and to the motor
(for input), to the chassis (for braking) and to the
wheels (for output), nor the nature of the clutches
needed in these paths in order to switch between
states (gear ratios). We will also not be considering
the number of teeth on gears, which determines the
actual numerical value of the gear ratios (as opposed
to their symbolic algebraic form, which is the level at
which these are considered here) and can effect
whether a certain combination of gears can actually be
assembled. Nor do we consider gear tooth shape,
which can be important in reducing gear noise, gear
wear and in improving power transfer efficiency. Most
of these features however, we do expect to include in
later formulations, as discussed in Section 7 below.

Leaving out the above-mentioned levels of detail in
a transmission means that we are in effect designing
abstractions or equivalence classes of transmissions
rather than actual transmissions (although this is
always true in some sense no matter how detailed one
gets). It also means that even at our present level of
abstraction, some of the solutions we obtain will
probably be seen later to be invalid because they will
not support any solutions at more detailed levels. In
particular, we have still to study carefully the reasons
that five of our seven solutions of Section 6 are
probably unacceptable, but there is certainly no
shortage of as yet unimplemented features (variables)
and corresponding constraints that are likely to
exclude them in a later more detailed formulation.
For the CSP formulation of our present version of the
transmission design problem, we will see that it
suffices to have ten variables with an average domain
size of about seven values each and a total of 43
constraints.

3.1 HARD LINKS (2 VARIABLES, 9 VALUES
EACH)

A link is a connection between two gearset
components that constrains those components to
rotate at the same angular velocity. A hard (or
permanent or non-clutched) link is a link built into the
transmission so as to remain permanently in effect at
all speeds. (Soft links are discussed below.) We
assume here that the transmissions we are designing
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have exactly two planetary gearsets linked by exactly
two hard links, L, and L2.

For each of the hard links we need to decide what
gearset components it joins together. The parts of
gearset 1 that may constitute an end of a link are
Partsi = {sl,al,rl}, and the parts of gearset 2 are
Parts2 = {s2, a.2, r2}. Note that planets are not
candidates for the end of a link due to the difficulty of
linking to these parts which, besides rotating on their
axes, have centers which revolve about a sun gear.
(See footnote 4, p. 143 and the related discussion.) A
link is specified by the two parts which it links, and
may thus be denoted as a pair (pi, p2), with
plePartsx and p2eParts2. In other words, the
domains for the hard link variables LI and Ul are

dL\ = dL2 = Parts, x Parts2

= {(si, s2)(sl, a2)(sl, r2)(al, s2)(al, al)

X (al, r2)(r\, s2)(r\, a2)(rl, r2)}. (11)

The above domains assume that hard links between
parts in a single gearset are not allowed. This is
because such a link locks all gearset parts to rotate in
synchrony, resulting in only a direct drive state (p = 1)
being produced, as seen for example in state 8 of
Table 1. This would make the pair of linked gearsets
functionally no more flexible than a single gearset.
Such a situation may be desirable temporarily for
achieving one of the speeds of a transmission, as
occurs for speed 2 of Figure 4 and for the third speeds
of Figures 5 and 6. But we are here considering
permanent links. There is no point in permanently
linking parts on one gearset and thus effectively
reducing a pair of gearsets permanently to one
gearset.

3.2 SOFT LINKS (0 VARIABLES)

As opposed to hard (or permanent or non-clutched)
links, soft (or temporary or clutched) links are not
fixed for all speeds of a transmission, but may be in
effect for some speeds and not in effect for others.
The transition is achieved through clutches that
re-configure connections between gearset parts. An
example was seen in Figure 4, where a temporary link
between the sun and arm could be established by
engaging clutch C5 to give speed 2 and disengaging it
to achieve speeds 1 and 3. Similarly the third speeds in
Figures 5 and 6 are achieved by soft links created by
simultaneously engaging clutches Cl and C2. Our

current formulation of the transmission design
problem assumes that there are no soft links between
gearset parts.

3.3. OUTPUTS (0 VARIABLES)

In general, for each of the n forward speeds (in our
case, n = 4) and the one reverse speed that we want
our transmission to realize, we need to decide on the
part to output from. This would introduce n + 1 new
variables Out0, Outu Out2,.. . , Outn into our CSP
formulation. However, as explained in Section 2.2.5,
it is common practice in automobile transmissions to
have the same output part for each speed. Thus one
output variable Out will suffice.

The domain of Out might a priori be thought to be
dOut = PartSi U Parts2 = {si, al, r\, s2, al, r2}. How-
ever, output from a sun is not used in practice
due to stress considerations. The sun is the smallest
diameter component of the relevant parts (sun, arm
and ring). And since torque T is the product of force F
and the radius R about which the force is causing
rotation, achieving a given torque requires a larger
force if the radius is smaller (e.g. it is harder to shut a
door by pushing near its hinges than by pushing at the
door handle). Thus transmitting a given output torque
from a sun gear would require a relatively large force,
excessively stressing the sun gear teeth. Thus the
domain of Out is reduced to dOu,= {al, rl, a.2, r2}.

But note that we are currently not distinguishing
gearsets 1 and 2 other than by giving them different
names. This will change in later formulations where
one gearset will be considered closer to the motor,
thus making the gearsets distinct at least with respect
to the topological constraints which we will then be
incorporating. But under the current formulation,
outputing from gearset 1 is functionally equivalent to
outputing from gearset 2. To avoid this kind of
redundancy we arbitrarily choose gearset 2 as our
default for output. The domain for Out thus becomes
dout= {#2, rl). And in fact, for simplicity in this
initial formulation we have excluded a2 also, so that
for the domain of Out we use simply dOu,= {r2}. The
two-gearset states of Tables 2 and 3 and those of the
transmissions in Figures 5 and 6 all used only this
value for Out (whereas those of Table 1 and in the
transmissions of Figures 3 and 4, allowed varying
output for the one-gearset case shown there).

Note that since Out is here allowed only a single
value, it is actually no longer a CSP variable as such,
and need not be explicitly instantiated at some given
level of the search tree. Thus our sample trace of
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Figure 9 indicates no level for Out, which is globally
taken as equal to rl. Analogous search trees for later
formulations would have a level corresponding to
instantiation of Out to at least al and rl.

3.4 INPUTS (4 VARIABLES, 6 VALUES EACH)

We are assuming that the kinematic state of our
linked pair of planetaries at each speed is charac-
terized, as described in Section 2.2.6, by the
placement of two links, and the choice of input,
output and braked parts. Unlike the links and the
output part, the input and braked parts are allowed to
vary with speed. To specify the input parts we
therefore need a variable In, for each speed O s / < n .
A priori, any of the combined six parts of the two
gearsets is a potential input part at each speed, so that
the domain of each variable /n, is

d,ni = Parts{ U Parts2 = {si, al, rl, si, al, rl}

We have excluded the i = d case to make explicit that
we are not presently concerned with the direct drive
speed. Since d = 3 and n = 4 here, the above
introduces four new variables Jn0, Inu In2 and In4

into our CSP formulation. These are the only In,
variables that appear for example in the trace of
Figure 9.

3.5 BRAKES (4 VARIABLES, 6 VALUES EACH)

To specify the braked part at each speed we need a
variable Br, for O s j < n . As with the inputs above,
any of the combined six parts of the two gearsets is a
priori a potential braked component at each speed so
that the domain of each variable fir, is

dBn = U Parts2 = {si, al, rl, si, al, rl}

for 0 < i # d < n.

Again, as for inputs, we have excluded the i = d case
since we are not here concerned with the direct drive
speed. For braked parts however the reason to
exclude the i = d case above is even stronger: there
may not necessarily even be a braked part in direct
drive. It may be replaced by an extra temporary link,
as discussed for example in connection with state 8 of
Table 1. Since d = 3 and n = 4 here, the above
introduces four new variables Br0, Brx, Br2 and Br4

into our CSP formulation. These are the only Br,

variables that appear for example in the trace of
Figure 9.

3.6 SIZES OF GEARS (0 VARIABLES)

In this initial formulation of the transmission design
problem we do not concern ourselves directly with
geometrical considerations such as the sizes of
component gears. However gear size is relevant
indirectly in that it effects the number of teeth allowed
on the gears. In particular, it effects the ratio
[} = Tr/Ts, introduced in (2), between the number
teeth on the ring gear and the number on the sun
gear. Limits on gear sizes will hence place limits on /3,
and since all gear ratios can be expressed in terms of
the /? ratios of the transmission gearsets, gear size
limits allow us to reason about the validity of gear
ratios achieved. We will see examples of this below.

The following are the upper and lower bounds (in
inches) that we will be assuming for the diameters of
sun, planet and ring gears in a planetary gearset.

2 < D , < 5 1<D P <2 .5 4 < D r < 7 . (12)

These arise as shown below, the first three cases being
primary and the other three being deduced from
them. We are assuming here a standard American
passenger vehicle. The assumed and deduced values
would be different for say a motorcycle or a truck.
The basic logic would however be the same.
1. The ring gear cannot be greater than D"r'"

x =
7 in. This limit is imposed by the maximum space
available in the vehicle for the transmission.
(Having the ring gear fit of course ensures that
the sun and planets fit since the ring encloses
them.)

2. The sun gear cannot be smaller than D'"'" = 2 in.
This is because in general the sun gear needs an
input and/or output shaft running co-axially
through its center, and 2 in. is the minimum sun
diameter that allows such a shaft capable of
handling the necessary loads and stresses.

3. A planet gear cannot be smaller than Dp"" =
1 in. This is so as to allow for a shaft (connecting
the planet to the arm) to allow the planet to
rotate on its axis. Note that the 1 in. diameter
needed to allow for this is smaller that the 2 in.
needed to allow for the sun gear's shaft, since
the planet's shaft is just to allow rotation of the
planet on its axis whereas the sun's shaft is also
for input and/or output of torque and must
therefore be larger.

4. The ring gear cannot be smaller than D™" = 4 in.
This follows from Dr = D, + 1DP, by (3), and the
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0=7/2

5a

FIGURE 7. The region (gray) of possible pairs of
teeth numbers T, and 7̂  on the ring and sun gears of a
planetary gearset. a denotes the dimetral pitch for the
gearset. We see that the ratio /S = TJTS must be in the

range 7/5 </3< 7/2.

above-mentioned minimum diameters of D™'" =
2 and D™'" = 1 for the sun and planet.

5. The sun gear cannot be greater than D™ax = 5 in.
This follows from Ds = Dr- 2DP, by (3), and the
above-mentioned maximum ring diameter
D?™ = 7 and minimum planet diameter D™" =
1.

6. The planet gear cannot be greater than
D™ax = 2.5 in. This follows from Dp = (Dr-
Ds)/2, by (3), and the above-mentioned
maximum ring diameter D™ax = 7 and minimum
sun diameter Dfn = 2.

From these size limits and the use of (1) and (3), we
can deduce, as shown graphically in Fig. 7, that /3 is
bounded as follows

7/5 < /3 < 7/2. (13)

4. Constraints

This section describes the constraints that we use in
connection with the variables and values of the
previous section in obtaining a CSP formulation of the
transmission design problem. The division of the
constraints into categories here is for the sake of
providing some structure, but is not intended to be

definitive. The constraints below are given labels of
the form C, or C). These will be useful in our later
sample trace in Figure 9, to identify which constraint
is being applied where in the search process. Table 4
of Section 5 summarizes all our constraints and makes
explicit their dependence on the CSP variables of
Section 3. Remember that our current formulation
does not consider the direct drive speed d in a
transmission. In some cases below, we therefore
explicitly exclude speed d when specifying a family of
constraints. In other cases we do not, either for
simplicity or because it is not yet clear if, or in what
modified form, the constraints will apply for direct
drive. In any case, speed-d versions of any constraints
below are to be interpreted as not necessarily being
valid, and of course none of them are used in our
current search (as seen from Table 4 or Figure 9). The
states in Tables 2 and 3 above, and in Table 5 below,
all satisfy the applicable constraints of this section. So
do the states of the exhaustive listing for all 18 hard
link pairs given in Table Al of the Appendix. They
thus provide examples that may be useful in clarifying
the meaning of the constraints below.

4.1 HARD LINK CONSTRAINTS

• Non-connecting links: As mentioned, we are
interested in transmissions made of two planetary
gearsets linked by two hard links (and no soft links).
The allowed values for the two hard link variables LI
and Ll were given in (11). But not all pairs of hard
link values are compatible. In particular, two hard
links are not allowed to have a common end. If the
two hard links are L1 = (L1~, Ll+) and L2 =
(L2~, L2+) then we can express this constraint as

L1"#L2~ and L1+=£L2+. (C.)

Note that we do not have to explicitly enforce
Ll~?tL2+ and L1+^L2~; these cannot occur since
L\~ and L2~ are both in gearset 1 and Ll+ and L2+

are both in gearset 2, as discussed in Section 3.1.
Actually, the reason given there for why the two ends
of a hard link must be in different gearsets is closely
related to the justification for the above constraint C,
that the two hard links cannot have a common end.
Consider for example two hard links Ll = (Ll~, Ll+)
and L2 = (L2~, L2+) with a common end Ll~ = L2~
in gearset 1. Functionally this is like having a hard link
between the other two non-common ends Ll+ and
L2+ in gearset 2, since these ends are constrained to
move together due to their linkage via the common
part in gearset 1. We have then, indirectly, what
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amounts to a hard link within a single gearset—and
we have seen in Section 3.1 that such a situation is
undesirable, as it permanently reduces a two-gearset
configuration to essentially a one-gearset con-
figuration.

• Link renaming equivalence: In linking gearsets
using two links it does not matter which link we call
LI and which we call L2. That is, having two links
Ll = (Ll-,Ll+) and L2 = (L2~,L2+) is physically
the same as having the two links LI = (L2~, L2+) and
L2 = (Ll~, Ll+). This kind of redundancy can be
avoided by requiring say link LI to be lexographically
less than link L2, with respect to the underlying order
of parts given in (9). We write this constraint as

(LI (L2~, L2+). (C2)

Using constraints C, and Q reduces the a priori
81 = 9 x 9 possible pairs of links for two planetaries
down to the 18 pairs shown in Figure 8.

• Link end equivalence: Since two parts joined by a
link are by definition constrained to move together,
braking one end of a link also brakes the other end.
Similarly, inputing to, or outputing from, one end of a
link is respectively like inputing to, or outputing from,
the other end. This kind of functional redundancy can
be avoided by choosing say the gearset 1 end of a link
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tL2 +

* L 1 +
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for

for
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as the preferred part, and not allowing the gearset 2
end as legal for the input part In, or braked part Br, at
any speed i. If the two hard links are LI = (Ll~, Ll+)
and L2 = (L2~, L2+), then we can express these
constraints as

(CL)

(C4A)

Note that the above constraints remove functionally
equivalent states. Those states however will not
necessarily remain equivalent in other ways in later
formulations. In particular, when we distinguish
gearsets 1 and 2 by their placement with respect to the
motor the two ends of a link will generally become
topologically inequivalent. However at the current
level of formulation, we are justified in assuming
equivalence of ends and using the above constraints.
Note that we do not need constraints analogous to
those above for restricting Out to a preferred end of
each link, because Out is assumed fixed here at
Out = r2 and is thus already restricted to the gearset 2
end of any link it impinges on.
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FIGURE 8. The 18 legal (out of 9 x 9 = 81 possible) pairs of hard links between two planetary gearsets.
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4.2 GEAR RATIO OR SPEED CONSTRAINTS

• Don't brake the output: It is obvious that a brake
should not be applied to the output part, else we get
no output torque. Thus we have the constraints

Br, =£ Out for 0 < i < n. ( Q )

Since braking a part that is linked to the output causes
the same problem—no output torque—we interpret
C5 to mean that neither the output part, nor a part
joined to it by a link, may be braked.

• Don't brake the input: As with not braking the
output part above, we also cannot brake the input
part, else we get no input torque. Thus we have the
constraints

Br, # In, for 0 < i < n. (Q)

Unlike with constraints Q , we need not here be
concerned with also not braking a part linked to the
input part. Such a situation cannot arise since as long
as constraints C'3A, C'3B, C\A and C\B are checked
before C6 constraints. The former constraints ensure
that if either the input part or the braked part is on a
link then they are at the gearset 1 end of that link, and
cannot thus be on opposite ends of a link.

• Don't input to the output: When the input part is
the same as the output part, the gear ratio
P = (°out/o)in must of course be p = 1 (see for example
state 7 of Table 1), so we get a direct drive speed.
Thus for all non-direct-drive speeds this possibility
must be excluded. We therefore have the constraints

In, i-Out for 0 < i # d < n (Q)

where as before, index d is the index of the direct
drive speed (for which case it is allowable to have
Ind = Out). Since inputing to a part that is linked to
the output causes the same problem—a direct drive
ratio—we interpret C'7 to mean that neither the output
part, nor a part joined to it by a link, may be the input
part.

The above constraints Q to C, are the formal
reason why, as seen in Tables 2, 3 and Al, there are
six functionally different non-direct-drive states for
each choice of output part and hard link pair. The
functional equivalence of the two ends of a link, as
implicit in C'3A, C'3B, C'4A and C4B, reduce the two end
parts of a link in effect to a single 'part'. Since there
are two hard links, with no ends in common by C,, the
six parts of the two gearsets are thus functionally
equivalent to only 6 — 2 x 1 = 4 parts. When one of

these is chosen as the output part Out, there are only
three choices left for the input part In and braked part
Br because neither In nor Br may equal Out by Q and
Q. Thus there are three choices for In and for each of
these, since Br may not equal In by Cg, there are a
remaining two choices for Br. We thus have a total of
3 x 2 = 6 choices for the In/Br configuration for a
specified output part. Of course, since there are in
general four functionally inequivalent choices in the
first place for Out (although here we use only
Out = rl), there are thus 4 x 3 x 2 = 24 possible
In/Br/Out configurations for each hard link combina-
tion of two gearsets, as opposed to only the six of
Table 1 for a single gearset.

• Different ratios in different gears: By definition,
different speeds or 'gears' must have different gear
ratios. Since we are assuming a fixed output part Out
in each speed i, the gear ratio in speed i (for a given
pair of hard links) varies only with the input part lnt

and the braked part Brt. To avoid the same ratio at
different speeds i and /, we thus require at least one of
these variables to be different, giving the constraints

(/«,#Irtj) or (Br,#Br,) for 0<i<j<n. (C^)

• Gear ratio ranges: In designing a transmission,
perhaps the most basic features are the number of
speeds and the values of gear ratio available at those
speeds. The number of speeds desirable in a
transmission depends on various factors such as the
type of vehicle, where and how it will be used, the
power of the motor and how important it is to save
fuel and reduce engine wear. A nice discussion of
these considerations appears in Heldt (1955), pp. 5
and 6. We are assuming here a transmission with 1
reverse speed (p0 < 0) and n = 4 forward speeds
consisting of two underdrives ( 0 < p , < p 2 < l ) , a
direct drive (p3 = 1) and an overdrive (p4 > 1) speed.
An example of such a 4R-speed transmission, Axod,
was seen in Figure 6. Analogous transmissions with
fewer speeds were shown in Figures 3 to 5.

The following constraints specify the ranges we will
consider acceptable for the gear ratios p, at these
speeds. They represent common practice for a
4R-speed automatic transmission in a full-sized
passenger vehicle. Note that the ratio for direct drive
is included only for completeness. As mentioned, we
do not explicitly concern ourselves with the direct
drive state in our present formulation.

Reverse Gear Ratio:

-5 s po(j8,, B2; LI, L2, In0> Br0) < - J (Q)
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First Gear Ratio (low underdrive):

isp,(j8I,/32;Ll,L2,//iI,Br1)si (CI0)

Second Gear Ratio (high underdrive):

l*p2(Pi,P2\Ll,L2,ln2,Br2)xi (C,,)

Third Gear Ratio (direct drive):

P3 = 1 (C12)

Fourth Gear Ratio (overdrive):

l i s p4(j3,, &; LI, L2, /«4, fir4) < \\ (C13)

For each kinematic state that our algorithm
generates, it computes p,(/3,, p*2) symbolically as a
function of )8, and /32, the ring-to-sun teeth number
ratios for gearsets 1 and 2. These symbolic expressions
are obtained by solving a corresponding set of
simultaneous linear (kinematic) equations, as dis-
cussed in connection with Tables 2 and 3. The form of
these equations depends on the particular hard links
used (the values of LI and L2) and on the parts being
used for input and for grounding at speed i (the values
of Irij and Br). The ratio p, obtained from these
equations—but not the form of the equations per
se—depends further on the choice of output part at
speed / (the value of Out,). Thus p,(/3,, /32) is more
fully denoted as p,(j8,, /32; LI, L2, Inh Br,, Out,) or,
in our case, p,(/31; j82; LI, L2, In,-, Br,) since we
consider the output part fixed at Out, = rl for all
speeds. It is in this way that (C9) to (C13) formally act
as CSP constraints on the actual variables of our CSP
formulation. This is made explicit in the correspond-
ing rows of Table 4 below. Examples of obtained
symbolic expressions PJ(BU B2; LI, L2, Inh Br) were
seen in Tables 2 and 3 and in Figures 5 and 6. Others
are seen below in Table 5 and in the Appendix.

The above ratio-range constraints Cg to C13 are thus
somewhat different than the other constraints of our
formulation, in that they involve our CSP variables
only implicitly, but are explicit functions of auxiliary
variables Bt and B2. Certainly the gear ratios p, are
not themselves CSP variables, and the corresponding
constraints above cannot be tested simply by using
instantiated values of p,. A p, expression is a function
of /S, and B2, which in turn are functions of the teeth
numbers Tsl, Ts2, Trl and Tn. So values for p, could be
obtained by instantiating these as CSP variables; their
domains would be discrete and finite as required. This
would be a natural approach, but as discussed in
Section 3, in our current formulation we do not wish

to go to this level of detail and corresponding search
complexity. So teeth numbers for gears are not
features (CSP variables) of our design at present, and
the above ratio-range constraints must be tested less
directly.7

The indirect test we use is based on the work of
Ward (1988). Given a function z = f(x, y), monotonic
in both x and y, it is possible to bound the variation in
z given bounds on the variation in x and y. In
particular, if a < x :£ b and c^y <d, then

min {/(a, c), f(a, d), f(b, c), f(b, d)} < z
< max {f(a, c), f(a, d), f(b, c), f(b, d)}. (14)

Given that we have bounds on /?, and B2 from (13),
we can use (14) to bound the value of p(Bu B2) for a
given kinematic state.8 For example, state 6 of Table 2
results in a gear ratio of p = (1 + B2)l{\ + /3, + B2),
which is monotonic in both /3, and B2. We thus have,
by (14) and (13), that

min {0.632, 0.407, 0.763, 0.563} <pQ3,, B2)

< max {0.632, 0.407, 0.763, 0.563}

or
0.407 sp(j8,,j82)s 0.763

We can use this range for p to conclude that
constraints C9, C)2 and C13 cannot be satisfied, since
there is no overlap of the range with the ranges
required by those constraints. Thus the corresponding
state cannot be used to provide a reverse, direct drive
or overdrive gear ratio. Constraints CU) and C u

however are not violated, since there is overlap of the
range [0.407,0.763] with that required by each of
those constraints, and the state may still be used to
provide a low or high underdrive ratio. (It is this kind

7 Even if we did consider teeth numbers, it would be preferable in
terms of combinatorial explosion to postpone instantiation of the
corresponding variables till the last levels of the search tree—and an
initial application of our indirect scheme for testing the ratio-range
constraints would still be desirable to allow some earlier pruning
higher up in the tree.

8 This assumes p(Pu f>2) is monotonic in /J, and /S2 as required by
(14). We have found that of the 18x6= 108 states that our search
generates, all but four do have monotonic p functions. (See the
discussion in the Appendix.) We hope to generalize (14)
appropriately in the future to handle the remaining non-monotonic
cases. Even if the generalization cannot be made it is not critical,
since once we refine the formulation to include teeth number, as we
intend to do, we may test constraints C, to C n numerically as
mentioned above. In that case the approach of (14) would still be
useful, but only because it allows us to partially test the ratio-range
constraints earlier for a more efficient search, as implied in footnote
7 above.
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of numerical range information, and corresponding
allowable speeds, that is given exhaustively in the
appendix. The above example for instance, appears
there as state 6 of case 2.)

Note that non-overlap of a state's range for p and
that required by a ratio-range constraint, means that
the constraint is definitely violated. Overlap on the
other hand, does not mean that the constraint can be
necessarily satisfied. It just means that the ratio-range
constraint is not definitely violated. The ratio-range
constraint is only definitely satisfied when a specific
value of p is found in the range required by the
constraint. Such a full check of satisfaction is not
possible under the current formulation because we do
not get to the level of assigning gear ratios specific
numerical values, since we do not consider teeth
numbers per se. In this sense the use of Ward's
method in the current implementation is a way of
partially checking the ratio range constraints.

• Gear ratio span and step: Constraints C9 to C13

are constraints on individual ratios (and hence on the
corresponding LI, L2, In, and fir, variables). But the
value of one ratio may effect the allowable values for
other ratios. Two important classes of inter-ratio
constraints are the span constraints and the step
constraints. The former specify what the spread
between the highest and lowest gear ratio should be.
The latter specify what the ratio between successive
gear ratios should be. We leave implementation of
these constraints to a later stage. They will be a lot
easier to incorporate after teeth numbers have been
decided (see Section 4.4) so that corresponding gear
ratios will be available numerically, rather than just
symbolically as here. Span and step issues are
discussed in (Heldt, 1955), pages 6 to 11.

4.3 SIMPLICITY-OF-SWITCHING CONSTRAINTS

An important class of constraints are what we call
the simplicity-of-switching constraints. This notion
was introduced in Section 2.2.5. The idea is to keep to
a minimum the necessary clutch and brake switches in
changing the input and/or braked parts between
'directly interchangeable' pairs of speeds, i.e. between
pairs of speeds for which a direct move from one to
the other is likely to occur in practice. If the clutch
and brake pattern is required to change too much
between such speeds, it becomes very difficult to build
the switching network so as to effect these changes in
synchrony. In that case one risks the potentially
dangerous possibility that unintended speeds will be
entered transiently before a given target speed is
achieved.

Thus we allow only simple changes of braking and
clutching between directly interchangeable speeds. In
particular, we allow at most one of the braked part
and the input part to differ in the states for such a pair
of speeds. This gives us the following simplicity-of-
switching constraints

(/n, =/ny) or (fir, = firy)

for (t,y) e {(0,1), (1,2), (2, 4)}. (Ctf)

The most basic pairs of directly interchangeable
speeds are the pairs of successive speeds: (1,2),
(2, 3) and (3,4). The latter two pairs are excluded
above simply because our transmission designs
currently ignore speed 3 (direct drive). Actually, in
(Nadel and Lin, 1991a) and the IJCAI-91 workshop
version of (Nadel and Lin, 19916), we only used the
above (i, /) = (1,2) case, and did not use the
(i, j) = (0, 1) and (i, j) = (2, 4) cases. This was due to
a misunderstanding over what is common practice at
Ford. However, it seems that it is not uncommon for
drivers to need direct switches between speeds (0,1)
and also between speeds (2,4). For example, when a
vehicle is stuck in snow or mud, it is often useful to
rock it loose by repetitively moving directly between
reverse (/ = 0) and first speed (y = 1) and back again,
even though usually one would stop off at neutral in
between. The present use of the additional (/, /) =
(0, 1) and (i, j) = (2, 4) cases is the reason that (as we
will see) there are only seven solutions found here
while in (Nadel and Lin, 1991a) and the IJCAI-91
version of (Nadel and Lin, 19916) 10 solutions were
found (see footnote 2, p. 138). It is in fact a simple
matter to check visually that three of those earlier 10
solutions, numbers 2, 3 and 7, violated either the
(/, j) = (0, 1) or the (i, /) = (2, 4) case of constraints
C'1'4 and hence should be excluded as solutions for our
present version of the transmission design problem.

4.4 GEARING CONSTRAINTS

Gearing constraints are those which directly effect
any aspect of the gears making up the planetary
gearsets in our transmissions. This includes gear tooth
shape, gear weight, size, etc. However, at least for
quite a while, we will not be designing transmissions
at that level of detail. At most we will be interested in
the number of teeth on the various gears, because of
their effect on gear ratios p, via parameters
P\ = Trl/Tsl and P2=Tr2ITs2. Even just for teeth
numbers on gears there are quite a few constraints
that apply. Some are 'hard' constraints which must be
satisfied, such as those which ensure that the
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component gears of an assembled gearset can mesh
with each other (Kelly, 1959). Others are 'soft'
constraints which it is desirable, but not essential, to
satisfy such as those which reduce gear tooth noise
(Jones and Route, 1963; Route, 1988) or gear tooth
wear (Jones, 1988). In any case, at the present level in
our design of transmissions we do not consider teeth
number or other gear-level features, and postpone a
description of gearing constraints till a later paper
(Nadel, 19916).

4.5 TOPOLOGICAL CONSTRAINTS

Another class of constraints that becomes relevant
when we refine our design of transmissions to the level
seen in Figures 3 to 6 are the topological constraints.
These are necessary in order to ensure that the
proposed hardware paths linking gears and clutches
and brakes are topologically acceptable. Loosely
speaking, this means that the paths do not pass
through each other, or requite other contortions
which are not acceptable. As with gearing constraints,
since in the work reported here we are not refining
our designs to this level, we postpone a description of
topological constraints till a later paper (Nadel,
1991c).

5. Some theoretical considerations

The previous two sections gave our CSP formulation
for the version of the transmission design problem we
are currently considering. This section summarizes our
formulation and looks at it in relation to some
theoretical issues treated in earlier work. The
following table summarizes the CSP variables we use,
as introduced in Section 3.

Variable z, L\ L2 Ina Brn In, Brx In2 Br2 In,

D o m a i n s i z e m 2 | 9 9 6 6 6 6 6 6 6 6

We see there are 10 variables, two with domain sizes
of 9 and eight with domain sizes of 6. So the overall
Cartesian product D=XzeZdZi, or search space,
from which solutions are to be found has size

z,eZ z,eZ

= 9 2 x6 8 = 136,048,896.

Table 4 summarizes the constraints we use, as
introduced in Section 4. For each constraint Cy, the
table shows by a x the variables z, making up its

argument set Zr Also shown for each constraint is:
• its arity A, = \Zj\ (number of argument

variables);
• the size Mt = |Dy| = IL,€Z, mz, of its Cartesian

product Dj= X z e Z d2,;
• its satisfiability S, (the number of tuples from D,

that satisfy C,);
• its satisfiability ratio R, = Sj/Mt (the fraction of

tuples from D, that satisfy C,).
The above notation was introduced in Section 2.1. We
see from Table 4 that there are c = 43 constraints, of
which eight are unary (Aj = 1), 22 are binary (A, = 2)
and 13 are quaternary {A, = 4). With n = 10 variables,
of average domain size 6.6 = (2 x 9 + 8 x 6)/10, and
with c = 43 mostly binary constraints, we see that our
formulation has resulted in a CSP instance that is in
fact surprisingly small. It is of about the same order of
difficulty as the 10-queens problem (of finding all ways
to place 10 queens on a 10 x 10 chessboard so that no
two queens attack each other) under the standard CSP
formulation (Nadel, 1990a), which has ten variables,
each of domain size 10, subject to (2°) = 45 binary
constraints.

The 10-queens problem has 724 solutions (Nadel,
1989). How many can we expect our present problem
to have, from its underlying search space of over 136
million candidate solutions? It has been shown
(Nadel, 1986, 1991a) that the expected number of
solutions for an instance in what we call a 'small class'
of CSP instances, is given by

This is a slight generalization of equation (36) in
(Nudel, 1983a). It considers all instances of the
underlying small class to be equally likely. A small
class is the set of all CSP instances having a given set
Z of n variables 2,, each of corresponding domain size
mZi and having c constraints C, each of corresponding
satisfiability ratio Rj = SjlMr There are in fact
11/=1 Cs') problem instances in such a class, because
for each of the c constraints there are (^') ways to
choose the required 5; satisfying tuples from the M,
tuples of the Cartesian product D, for the ;th
constraint Cr Clearly, in spite of the name 'small
class', such classes can be extremely large. In our
case, using the M, and St values from Table 4, this
gives

(ID2 • (It)16 ID4(ID

for the size of the small class to which our problem
belongs. Using (15) with the domain sizes mZi from the
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TABLE 4. The 43 constraints
their argument sets Z,, their
satisfiability ratios /?,

C, of our CSP formulation, the variables (denoted by x) of
arities Ajt Cartesian product sizes M,, satisfiabilities S, and

3

1
2
3

4

5

6

7
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15
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25
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33
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41
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Ci
C2
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cfs
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1
c?
cl
cl
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Cio
Cn
Cl3

1
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X X
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X X
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X X X X
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C
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6
6
6
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1296

1296

1296

1296

1296

1296
2916
2916
2916
2916

1296

1296

1296

s,
36
36
45

45

45

45

45
45
45
45

45
45
45
45

45

45

45

45

5

5

5

5

30
30
30
30

5
5
5
5

1260

1260

1260

1260

1260

1260

« 918
«378
«378
a 891
396
396
396

4/9
4/9
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6
5/6

35/36
35/36
35/36
35/36
35/36
35/36

« 34/108
ss 14/108
fs 14/108
« 33/108
11 /36
11/36
11 /36

table above and the satisfiability ratios /?y from Table
4, the expected number of solutions for an instance in
this small case is found to be

5 = \28 . /35\6 . ,34. . / J 4 \
) U6,> 108 U08J • *

= 6.35.

In the next section we will see that our problem in fact
has seven solutions. The theoretical expected number
of solutions, 6.35, for the parent small class is
remarkably close to the actual number, 7, for our
problem given that its search space has over 136

million candidate solutions, and given that by
definition an expected number is an average over a
whole class (which in our case contains about
4.6 x 104218 instances) and is not meant to be exact for
individual subsumed instances.

However, if the instances of a class over which an
expectation is obtained are reasonably similar, then a
class average of a quantity may be expected to be a
good approximation to the values of that quantity for
individual subsumed instances. It is in fact for this
reason that we have chosen to analyse CSP in terms of
small classes: such classes contain instances similar
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enough that their time complexities are reasonably
similar and thus the small class average complexity
provides a useful approximation of the complexity of
solving most individual instances of that small class.
This has been found empirically (Nadel, 1986, 1991a;
Nudel, 1983a) to be so for the complexity of solving
CSP instances by the Backtracking algorithm and
by the Forward Checking algorithm. Experiments
have shown that for both these algorithm, about 80%
of the instances in a small class have time complexity
within 15% of their small class expected time
complexity. The number of solutions (but not
necessarily the time complexity) of our example is for
instance 10.2% = (7-6.35)/6.35 from the expected
value for its small class. A problem (sub)class with
this kind of similarity for all, or most, of its member
instances we call 'homogeneous' with respect to the
quantity of interest. It is a useful goal to aim for in the
analysis (best-case, worst-case or expected-case) of
any random variable. It is achieved by making the
appropriate ('homogenizing') choice of parameters in
terms of which the sample space is to be analysed. A
good choice of analysis parameters partitions the
outcomes into subclasses that are each homogeneous
in the quantity of interest. A consideration of
homogeneity in the context of analysing the
well-known insertion sort algorithm appears in
(Nadel, 1988). CSP small classes are less homoge-
neous with respect to the quantity number of solutions
than they are with respect to Backtracking and
Forward Checking time complexity. Nevertheless,
even for number of solutions, the average value for
the parent small class is often a useful predictor of the
number of solutions for an individual instance, as seen
in our present example.

How were the parameter values in Table 4 found?
The Aj and Af, values are of course readily obtained
from their definitions. The constraint satisfiability
values Sj are less easy to obtain generally. By
definition S; is the number of tuples that satisfy the
constraint C, from the total number M, in the
Cartesian product D, of that constraint. As such they
can always be obtained by considering each member
of Dj (which is finite of course, since all domain sizes
are finite) and testing it with respect to C,. This
counting process can be tedious, but may often be
avoided or at least streamlined by a little mathemati-
cal analysis. Due to space limitations, and since it is
relatively tangential to the theme of this paper, we
forego discussion of the techniques applicable for our
present constraints. In any case, given 5, and Mt

values, the constraint satisfiability ratios in Table 4 are
then found as simply Rj = Sj/Mj.

The Sj and /?, values for four constraints, C9, C)0,

C|, and C13 (actually constraints C37 to C4() according
to the index j in the left column of Table 4), do
however require some further discussion. Each of
these constraints is in terms of the gear ratio p for a
state where, as described, a state's gear ratio is
obtained by solving a set of simultaneous equations
characterizing that state. A state corresponds to a
4-tuple (LI, LI, In, Br), as discussed in Section 4.2 in
connection with the ratio-range constraints. There are
here 2916 = 9 x 9 x 6 x 6 such combinations possible a
priori. Counting S9, Sw, Su and S,3, from first
principles would therefore require solving a set of
simultaneous equations for each of these 2916
combinations. This is an unappealing approach, and
no mathematical short cut is obvious. What we have
done therefore is to use only the 108 = 18 x 6
combinations of (LI, L2, In, Br) listed in Table Al of
the Appendix, for each of which we have solved the
corresponding set of simultaneous equations to obtain
its gear ratio symbolically and have tested this gear
ratio with respect to each of the ratio-range
constraints C9, C10, Cn and C13 to determine which
speeds the state can provide. We consider the 108
combinations of Table Al as representative of the full
2916 combinations in the sense that both the full and
reduced subset have an approximately equal fraction
that satisfy constraint C9, and similarly for C,(), C,,
and C13. This is not an implausible assumption, even
though it is true that the 108 combinations are 'biased'
in that they are the particular ones which satisfy
constraints C, to C7; see the related discussion in
Section 4.2 after constraint C7. This bias does not
necessarily effect the proportion of states which satisfy
constraints C9, Cl0, Cn and C,3 in the subset
compared to the full set. As shown in Table Al, of
the 108 states appearing, 34, 14, 14 and 33 are valid
for speeds 0, 1, 2 and 4 respectively and hence satisfy
constraints C9, Cw, Cu and C)3 respectively. We
assume the full set of 2916 has similar proportions of
satisfying states, so that fl9 = 34/108, /?„, = 14/108,
Rn~ 14/108 and Ri3~33/108. For completeness of
Table 4, we translate these back to the corresponding
approximate 5, values for the full set as follows:
S9« 918 = 34/108 x 2916, 510 « 378 = 14/108 x 2916,
5 , , * 378 = 14/108x2916 and S13 = 891 = 33/108 x
2916.

6. Our results

Sections 3 and 4 showed how we can formulate the
transmission design problem as a constraint satisfac-
tion problem, specifying respectively the CSP
variables and domains which we use, and the CSP
constraints. In this section we see how the resulting
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CSP instance is solved and discuss the solutions which
are found.

6.1 THE SEARCH TREE

There are many algorithms for solving constraint
satisfaction problems, as seen for example in (Dechter
and Pearl, 1988; Haralick and Elliot, 1980; Mack-
worth, 1987; Nadel, 1989). In the initial stages of our
work we used the Forward Checking algorithm
because experiments have shown it to be one of the
most efficient CSP algorithms (Haralick and Elliot,
1980; Nadel, 1989). However, as discussed in Sections
2.1 and 5, our current formulation of the transmission
design problem results in a rather simple CSP
instance, about as difficult as the 10-queens problem.
As such, the extra efficiency afforded by algorithms
such as Forward Checking is not particularly
important yet, and the easier-to-implement Back-
tracking algorithm (Haralick and Elliot, 1980),
(Nadel, 1989) suffices for its solution. Our formulation
becomes in fact doubly easy to implement if one takes
advantage of the implicit backtracking (not to mention
pattern matching) built into the interpreter of the
Prolog language. Our more recent implementations
have therefore been in Prolog, and this has resulted in
a marked improvement in program clarity (Nadel and
Lin, 19916).

Indications are that more complete versions of the
transmission design problem are also likely to be
amenable to a CSP formulation. The resulting CSP
instances will however be harder to solve (more
variables, values and constraints) and for these the use
of Forward Checking and the like will no doubt be
crucial. Prolog will then loose the advantage resulting
from its implicit backtracking, although of course any
of the more sophisticated approaches can be
implemented in Prolog just as they can in any other
language such as Lisp. Adding implicit Forward
Checking say, to a Prolog interpreter would extend to
harder constraint satisfaction problems the usefulness
of its current implicit backtracking. Such augmented
Prologs are in fact under development, as discussed in
(Van Hentenryck and Dincbas, 1986) and (Van
Hentenryck, 1989). For our present problem however,
the Backtracking algorithm is adequate and provides
the clearest demonstration of how the variables,
values and constraints of our formulation work
together to give transmission solutions. In Figure 9 we
therefore show the action of a Backtrack search
applied to our CSP formulation.

Remember, we are concerned with finding two-
planetary, two-hard-link transmissions for which, by

appropriate changes in input and braked part, it is
possible to realize speeds i = 0, 1, 2 and 4 while
satisfying the corresponding gear ratio ranges and
other constraints of Section 4. These aspects of our
transmissions can, as described in Section 3, be
characterized in terms of a total of only ten CSP
variables: two hard link variables LI and Ul and, for
each of the four speeds of interest, a braked-part
variable Br, and an input-part variable In,. The output
part is considered fixed at Out = rl for all speeds in all
transmissions. The ten CSP variables we use
correspond to the ten levels of the search tree in
Figure 9, with correspondences as indicated in the
'Variables' column at the left of the figure. At a given
level the figure shows all possible instantiations
(assignments) of that level's variable, being all the
values from the domain of that variable as described
in Section 3.

For extra clarity we include, in the 'Constraints'
column at the left of the figure, the list of constraints
(using the constraint labels of Section 4) that are
checkable at each level. These are listed top to bottom
in the order in which they are checked by our
algorithm. To save space, some related constraints are
grouped together on the same row of the figure.
Under each tree node we show for each of the
checkable constraints (or group of constraints),
whether the test of the corresponding constraint (or
group) succeeds or fails, denoted respectively by a
check mark or a cross. Of course, once the first
constraint-check failure occurs down the list of
constraints at a node, no further constraints need be
checked and the corresponding path through the tree
is 'pruned off. Only nodes at which all checkable
constraints are satisfied can be used to sprout
descendant nodes at the next level.

Note the six nodes which survive at level 2
(corresponding to variable L2) of the tree. As
required, the first four are those of row 1 of Figure 8
and the second two are from row 6 of that figure. The
other 18 - 6 = 12 pairs of LI and LI shown in Figure
8 would also have appeared as survivors in our search
tree of Figure 9 if there had been room to show all
paths through to level 2.

The remaining eight levels of the tree are divided
into four groups of two, corresponding to the two
variables In, and Br, at each of the four speeds i = 0,
1, 2, 4. Note that checking the ratio-range constraints,
G>, C10, C n and C13, is left till last at the
corresponding Br, levels, so as to first detect
violations, if any, of the other checkable constraints.
This is because checking ratio-range constraints is
relatively costly. As mentioned in Section 4.2,
checking a ratio-range constraint involves solving a set
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FIGURE 9. Part of the Backtrack search tree for designing 4R-speed transmissions with two planetary gearsets and
two hard links.
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of simultaneous linear equations characterizing the
transmission configuration, obtaining a symbolic
expression for the corresponding gear ratio p, and
using Ward's method of equation (14) to see if there is
possible overlap with the acceptable range for p,. As
an aid to the reader, at nodes in Figure 9 where the
processing gets as far as checking a ratio-range
constraint for a gear ratio p,, we precede the result of
that check by the symbolic expression (shown in the
corresponding shaded rectangle) obtained for that
ratio.

For example, there are four nodes at level 4
(variable Br0) at which the algorithm gets as far as
checking C9, the ratio-range constraint for p0. The
corresponding symbolic expressions for p0 are given in
the first (topmost) shaded rectangle of the tree in
Figure 9. At the next row of the tree we see that two
of these, p o = 1/(1 + 0,) and po = j8,/(l + /3, + /32),
are found to violate Q . This is obviously correct
because these latter ratios are positive whereas C9

requires p0 to be negative (it is the ratio for reverse
gear). The other two surviving nodes both have the
same ratio p o = - l / / 3 2 , which is found acceptable.
This is also obviously correct because we can use say
j82 = 3, in the range allowed by (13), to obtain
po=-1/ /S2 = - 1 / 3 , thus satisfying C9. In general,
manually confirming the ratio-range checks of our

algorithm is not that straightforward. However,
Table Al of the appendix can be helpful in this regard
since it gives the numerical ratio ranges, and
corresponding speeds allowed by the ratio-range
constraints, for all possible states generated in the
search.

6.2 THE SOLUTIONS

Figure 9 shows two branches leading to solutions in
our search tree. The left branch shown leads to the
discovery of a 4R-speed extension of the classic
3R-speed Simpson transmission of Figure 5 and the
right branch leads to discovery of the well-known
4R-speed Axod transmission of Figure 6. Interest-
ingly, these two transmissions have the same gear
ratios at corresponding speeds. The full set of
solutions found by our search is shown in Table 5.
Only seven solutions are found in all. Note that
besides solutions 3 and 7 ('Extended Simpson' and
Axod respectively) having the same set of ratios, so
do solutions 2 and 6.

The number of solutions found, seven, is surpris-
ingly small given the large size of our search space
(over 136 million candidate solutions, as discussed in
Section 5), and the fact that we have not yet

TABLE 5. The seven 4R-speed transmission designs (at the kinematic level) found by our program, assuming Out = rl,
ring-to-sun teeth-ratios /3t and /32 bounded as given in equation (13), and ranges for the gear ratios p, as given by
constraints C9, C,o, C,, and C,3

Solution # Ul Out Diagram

Speed 0

(reverse)

Br0

Speed 1

(low underdrive)

/n, Br, p,

Speed 2

(high underdrive)

In, Br, p,

Speed 4

(overdrive)

Fn, Brt p

1 (old 1) (sl,s2) (ol,o2) a l "A rl al
A
A r l al

A+AA
A + AA al si

i + A
A

2 (old 4)

3 (old 5)
Extended
Simpson

(sl,s2) (al,r2) r2

02 " A
l

i + A
a2 rl

1+A
1 + A+A

a2

"2 "A
a2

i + A + A i + A
o2 si

i + A
A

l + A
A

4 (old 6)

5 (old 8)

(al,a2) r2

01 "A si al
1

AA
l + A

A + AA al rl

01 "A rl si
AA-i
A + AA al si

AA-i
AA al rl

l + A
A

l + A
A

6 (old 9)
HM700

7 (old 10)
Axod

(al,r2) r2

s2 r l "A si rl 1
l + A

si s2 l + A
1 + A+A rl s2

r l "A
s2 si

i + A + A rl si l + A
r l s2

l+A
A

l + A
A

Not all relevant constraints have been applied. When they are, we expect all or most of the solutions 1 to 5 to disappear, but leaving the
well-known solutions 6 and 7, HydraMatic 700 and Axod. Solution numbers in parentheses are the old numbers from (Nadel and Lin,
1991a) and the IJCAI-91 workshop version of (Nadel and Lin, 1991t>), where ten solutions were originally found; see footnote 2, p. 138.
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incorporated quite a few relevant constraints. In fact,
according to our domain experts, only solutions 6 and
7 of Table 5 correspond to commercially manufac-
tured transmissions, the HydraMatic 700 and Axod. It
is possible that some of the other five solutions we
found are actually new discoveries (we haven't had
time to check thoroughly), but it is more likely they
will all be eliminated when the other applicable
constraints are added.

For instance, the switching network (which we are
ignoring here) required to build the Extended
Simpson transmission is thought to not be topologi-
cally realizable. If so, we expect it to disappear as a
solution when we implement topology (Section 4.5) as
part of our designs. Also the symbolic, non-numeric
way we are testing the ratio range constraints, based
on (14), ensures only that for each speed i = 0, 1, 2
and 4 independently there are possible values for p^
and /J2 from their allowed range (13) that allow the
gear ratio p, to be in its required range. Our tests do
not ensure that the same pair of p\ and /32 values will
work for all the ratios p0 to p4,9 as is of course
required in practice because the gears in our gearsets,
and hence /3, and /32, do not change with speed for a
given transmission. The latter problem will disappear
once we start to explicitly consider teeth number for
gears. We will then be able to test numerically the
whole set of ratio-range constraints to ensure that
their respective target ranges are satisfied for a
common pair of /?, and ]32 values. This may very well
eliminate some of our current solutions 1 to 5. The
step and span constraints (Section 4.2) are also most
easily tested once we assign numerical values to jS, to
pY These may eliminate further solutions.

Besides finding transmission 'solutions' that prob-
ably don't exist, several known transmissions were in
fact not found. Again, this is not a problem. It is
largely the result simply of having excluded al as a
possible value for the output, as mentioned in Section
3.3. This was done just as a convenient simplification,
and may easily be rectified. A recent preliminary run
of an extended formulation allowing also Out = al
does result in the inclusion of all or most of the
required remaining solutions.

"For example, solution 7 of (Nadel and Lin, 1991a), and the
IJCAI-91 workshop version of (Nadel and Lin, 19916) had
Pi = (jSift - l)/0i02 and P2 = (/Sift - l)/(02 + 0i02)- Clearly these
cannot fall in their required target ranges (3 £ p, s \ and \ s p2 s §)
when using the same pair of /3, and p*2 values in the two ratios,
because the larger denominator of p2 would make p2 always less
than PJ. This transmission is no longer a solution for the present
formulation, but due to a different reason, as mentioned in footnote
2, p. 138.

7. Extensions

There are many ways in which our work to date may
be extended. The following is a partial list, structured
in terms of increasing the depth (or granularity or
level of detail) of the search space, increasing the
breadth (or generality) of the search space and adding
an optimization capability over the search space.

(a) Increased depth: As mentioned in Section 6,
five of the seven transmission design solutions found
by our program (Table 5) are probably not physically
realizable. This is because we have not yet formulated
the problem at a sufficient level of detail to
incorporate all relevant constraints. Even for the
current level of detail all relevant constraints have not
yet been incorporated. Amongst oiher things, our
future formulations will need to consider

• teeth number on gears and the corresponding
gearing constraints of Section 4.4

• the specific nature of the transmission's switching
network (including clutches and brakes) and the
corresponding topological constraints of Section
4.5

• the span and step constraints of Section 4.2
• the nature of the transmission's direct drive and

neutral states with corresponding full use of the
applicable simplicity-of-switching constraints of
Section 4.3

• we mentioned in Section 2.2 that automobile
automatic transmissions consist of three interact-
ing subsystems: mechanical, hydraulic and electr-
onic, the latter two being needed to control the
former. Our present work concentrates ex-
clusively on the mechanical subsystem. In the
long run we expect to extend our transmission
design task to include the integrated design of all
three subsystems.

(b) Increased breadth: Apart from adding detail to
our designs, we also aim to broaden the design space
being searched, that is, generalize the class of
transmissions allowed. The current search is restricted
to transmissions of four forward speeds and one
reverse speed, made of two simple planetary gearsets
joined by two hard links and no soft (or clutchable)
links. In our future formulations we expect to

• allow an arbitrary number g of gearsets, rather
than just two as here

• allow an arbitrary number h of hard links, rather
than just two as here

• allow an arbitrary number s of soft (or clutchable)
links between gearsets, rather than none as here

• allow an arbitrary number n of (forward) speeds,
rather than just four as here

• allow 'compound' planetary gearsets, rather than
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just simple planetary gearsets. A description of
compound gearsets is beyond the scope of this
paper. See for example Husselbee (1986) or
Lynwander (1983).

(c) Optimality: Our present formulation of trans-
mission design does not concern itself with optimality
of the transmissions generated. At this stage we were
content to confirm that we could generate a sensible
feasible region (see Section 2.1), and in any case the
feasible region was very small (seven solutions) so that
automated optimization was not necessary. It is not
clear whether the feasible region grows appreciably
for the more detailed formulations we expect to use
later.

Adding more variables for such features as teeth
number and clutch and brake positions, will no doubt
result in multiple solutions for some of the classes we
are currently generating. On the other hand, some of
the classes will also no doubt be eliminated due to the
corresponding new constraints that will become
applicable. If the net effect is that the overall number
of solutions remains small in future formulations it
will still not be necessary to implement automated
optimization in our search algorithm. Our domain
experts would be able to do it 'manually'. This would
be a relief, since there are many features (such as gear
noise, gear wear, cost, ease of maintenance, spread of
gear ratios achieved etc.) that may be subject to
optimization in designing transmissions. Extracting,
formalizing and realistically balancing the relevant
optimality knowledge for computer implementation
would no doubt be a difficult, and relatively
ill-defined, job.

If this were necessary however, we would then be
solving an optimizing extension of standard CSP. We
could use a single criterion function that is some
weighted sum of the various features we are interested
in optimizing. However since the trade-off between
features is ill-defined, it would be more natural to use
a multi-criterion optimization formulation where no a
priori decision is made regarding relative importance
of features. Navinchandra (Navinchandra and Marks,
1987a, b; Navinchandra, 1991) has studied such a
multi-criterion optimizing extension of CSP, and in
fact has done so in connection with applications, like
ours, to automated design. Several other extensions of
CSP, which may be relevant to our future need to
optimize, have also received attention (Freuder, 1989;
Rosenfeld et ai, 1976; Shapiro and Haralick, 1981;
Ullman, 1979).

Basically the present 'first pass' at transmission
design has been encouraging. We have been able to
automate the rediscovery of the known transmissions
within the class we have delimited, and to avoid the

generation of most unacceptable solutions. The space
we have used has been relatively well explored
manually by human designers in the past. However,
the space corresponding to the above anticipated
extensions has not been manually explored to the
same extent. Preliminary indications are that a CSP
approach, like that used here, will successfully scale
up to handle most, if not all, of the anticipated
increases in breadth and depth of our formulation.
The distinct possibility exists for the discovery of new
and better transmissions in an automated search of
such extended design spaces.
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Appendix

Tables 2 and 3 above were for two particular ways of
using two hard links LI and L2, to link two planetary
gearsets. For these two hard link combinations the
respective tables gave the six different non-direct-

drive states achievable by varying the input and
braked part, when the output part is Out = r2. For
each of these states the tables gave the symbolic gear
ratio expression p(fi\, /32), obtained by solving the set
of simultaneous linear equations corresponding to that
state. This appendix, in Table Al, extends this
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TABLE Al. Gear ratios p achievable using two planetary gearsets with two links LI, L2 and output Out = rl. Ranges for p
assume p\ and /32 bounded as given in equation (13)

1

2

3

4

5

6

s
In

sl

sl

a l

a l

r l

r l

Br

a l

• rl

s l

r l

s l

a l

Case 1: Ll

P

1

ft

ft-ft
ft + ftft
l + ft

h

ft-ft
ft

ft + ftft
ft + ftft
ft
ft

= (sl,s2), L2 =

Range of p

-0.714, -0.286)

-0.333,0.25]

[1.286,1.714]

[-1.5,0 6]

[0.75,1.333]

[0.4,2.5]

(al,a2)

possible
speeds t

0

0

4

0,1,2

2,4

1,2,4

In

sl

sl

r l

r l

a2

a2

Br

r l

a2

s l

a2

s l

r l

Case 2. Ll

P

1

l+ft
1

ft

ft
l+ft

ft
1 + ft+ft

l+ft
ft
l+ft

1+ft + ft

= (sl,s2), L2 =

Range of p

[0.222,0.417]

[-0 714, -0.286

[0.583,0.778)

[0.237,0.593]

[1.286,1.714]

[0.407,0 763]

(ol,r2)

possible
speedsi

1

0

2

1

4

1,2

a
In

sl

sl

a l

a l

r l

r l

Br

al

rl

sl

rl

sl

a l

Case 3: Ll =

P

1+ft + ft
ftft

1

ft

1+ft+ft+ftft
ftft

l + ft
ft

l + ft
ft

1 + ft + ft
ft

(sl,«2), L2=(r l

Range of p

[-1.939,-0.653]

[-0.714,-0.286]

|1653,2 939]

[-3.214,-0.686]

[1.286,1.714]

(1.686,4 214)

,o2)

possible
speeds t

0

4

4

1

2

3

4

5

6

B:
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sl

sl

al

al

a 2

a2

Br

al

o2

sl

a2

s l

al

Case 4:

P

1

ft
1

ft
l + ft
ft

l + ft
ft- ft
l + ft

ft

l + ft
ft- ft

Ll = (sl,s2), L2 =

Range of p

[-0.714, -0.286]

|-0 714, -0 286]

[1.286,1.714]

(-oo.-ll]
U [2.1,oo)

|1.286,1714]

(-00,-11)

U [21, oo)

(rl,r2)

possible
speeds i

0

0

4

4

In

sl

sl

a l

a l

r l

r l

Br

a l

r l

s l

r l

s l

al

Case 5- Ll

P

l + ft
ft

ft+ft+ftft
ft+ftft
1

"ft
ft+ft+ftft

ft

ft
ft + ftft
ft + ftft

ft

= (sl,a2), L2 =

Range of p

[1.286,1.714]

[1.167,1556|

[-0 714, -0 286;

[2.8,7.0]

[ 0 556, 0 167]

[-6 0,-1.8]

(al,s2)

possible
speeds i

4

4

0

0
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s l

s l

r l

r l

S2

s2
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r l

s2

s l

S2

s l

r l

Case 6: Ll =

P

1

l+ft
l+ft

ft
ft

l+ft

ft + ftft
1 + ft + ftft

1

02

1

1+ft + ftft

(sl,o2), L2 = (a

Range of p

[0.222,0.417)

[1.286,1.714]

[0.583,0.778]

[0.771,0 940]

[-0.714,-0.286]

[0 060,0.229]

I,r2)

possible
speeds i

1

4

2

2

0

-

1

2

3

4

5

6

In

sl

s l

a l

a l

r l

r l

Br

a l

r l

s l

r l

s l

a l

Case 7: Ll =

P

1 + ft + ftft
ftft

l + ft
ft

l + ft
ftft

1+ft+ft+ftft
ft

1

ft
1 + ft + ftft

ft

(sl,a2), L2 = (rl,s2)

r, r possible
Range of p ,

^ y speeds i

(1.367,2.224]

[1.286,1.714]

[-1.224, -0.367]

[3.086,7.714]

(-0.714, -0.286]

[-6.714, -2.086)

4

4

0

0

In

sl

sl

al

al

s2

*

Br

al

S2

sl

s2

sl

al

Case 8: Ll =

P

1

ft
l + ft
ft

l+ft
ft

1+ft+ft+ftft
ft + ft + ftft

1

ft
1

ft+ft + ftft

(sl,a2), L2 = (rl

Range of p

[-0.714, -0 286)

[1.286,1.714]

[1.286,1.714]

(1.052,1.210]

[-0.714, -0.286]

[-0.210, -0.052]

,r2)

possible
speeds t

0

4

4

0

0

In

a l

a l

r l

r l

a2

o2

r
Br

r l

a2

a l

a2

a l

r l

Case 9: Ll =

P

l + ft

1

"ft

-ft

ft
1 + ft + ftft

l + ft
ft

1+ft+ft+ftft
1 + ft + ftft

(sl,r2), L2= (al,s2)

„ P possible
Range of p r .

° speeds i

[2.400,4.500]

[-0.714,-0.286]

[-3.500,-1.400]

( 0.479, 0.149)

[1.286,1.714]

[1.149,1.479]

0

-

0

4

4

information to all 18 of the valid hard link
combinations shown in Figure 8. For each hard link
pair there are six (non-direct-drive) states, making a
total of 18 x 6 = 108 states. The table thus contains
the gear ratios for all valid states generated by our
search algorithm, a partial trace of which was shown

in Figure 9. As discussed in Section 5, formally each
of the 108 states of Table Al corresponds to a 4-tuple
(Ll, L2, In, Br) that satisfies each of the constraints
d to C7 of Section 4, from the 2916 = 92 X 62 a priori
possible such 4-tuples.

In addition to the symbolic gear ratio expression,
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TABLE

I

2

3

4

5

6
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al

al

r l

rl

si

52

Al ,

r
Br

rl

52

al

s2

al

r l

continued

Case 10- t l

P

l + A

l + A
A

-A

A + A A
AA-i

l

A

i + A
AA-i

= (sl,r2), t2=(ol ,o2)
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(2.400,4.500] —

(1.286,1.714] 4
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-

0

-

0
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52

s2

Br

rl

s2

al
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(1 149,1.479]
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[1.286,1.714]

[-0 479,-0.149]

[-0.714, -0.286]

-

4

-

4

0

0

1

2

3

4

5

6
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rl
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5l
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1
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l

A
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i + A
A
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(-1.224,-0 367

[-0.298,-0.063;

[1.367,2.224]
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[1.286,1.714]
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0

0

4

0

4

4
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l
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A
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0

0
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[0.286,0.714]
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1

1,2

1,2

4

1,2

0

1

2

3

4

5

6
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r
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P

1
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A - A
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A

i + A
A
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l
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[-0.714, -0.286]
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[1.286,1714]

U (2-l,oo)

[-0.714,-0.286

(rl,r2)

possible
speeds t

0

4

4

0

&

In

s i

s i
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a2

a2
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rl

a2

s i
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r l

Case 17. t l

P

1

TTA

1

1 + A+AA

A
l + A

l

A + A A
l + A + AA

i + A
A

= (al,r2), t2=(rl

Range of p
s

[0.222,0.417]

[0.060,0.229]

[0.583,0.778]

[-0.714,-0 286]

[0.771,0.940]

[1.286,1.714]

52)

ossible
reeds i

1

2

0

2

4

In

s i

s i

rl

r l

si

s2

Br

rl

52

s i

s2

si

r l

Case 18. LI

P

1

l + A

l + A
1 + A + A

A
l + A

l+A
A

A
i + A+A

l

"A

= (al,r2), t2 =

Range of p

[0.222,0.417]

(0.407,0.763]

[0.583,0.778]

(1.286,1 714]

[0.237,0.593]

[-0.714, -0.286]

(H,a2)

possible
speeds t

1

<

2

4

1

0

The possible speeds i assume the corresponding gear ratios p, have allowed ranges as given by constraints Q,, C10, C n and C,3.

for each state Table Al also gives the numerical range
of values possible for its gear ratio given that the
ring-to-sun teeth-number ratios fi\ and /32 for the two
gearsets are bounded as in (13) between 7/5 and 7/2.
(Tables 2 and 3 only gave a rough version of this
information by giving the particular value of the gear

ratios when /3i and /32 had their nominal values of 2.)
The gear ratio ranges, for the assumed ranges of /3j
and j82, are obtained using Ward's method as
described in Section 4.2 in connection with equation
(14). In addition to numerical gear ratio ranges, Table
Al also gives for each state the zero or more
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transmission speeds, from / = 0, 1, 2 and 4, that the
corresponding ratio range allows, given the ratio-
range constraints C9, C10, C n and C,3.

Actually, Ward's method does not apply to four of
the 108 states in Table Al, because their gear ratios
are not monotonic in both /J, and f}2 as required. The
states with non-monotonic gear ratios are states 4 and
6 of hard link case 4 and states 2 and 5 of hard link
case 16. The gear ratio ranges given in the table for
these four states have been determined graphically,
without use of Ward's method. Our TRANS-FORM
program however assumes all gear ratios are
monotonic in /3, and /32. It thus wrongly continues to
use Ward's method for the four states with
non-monotonic gear ratios as well. As a result it
erroneously obtains for each of them that their
possible gear ratios are, by equation (14), in the range
[-l.l,oo). The correct range, obtained graphically, is
(-oo,- l . l ] u [2.1,oo), as given in Table Al. Our
progam thus wrongly considers each the four states to
satisfy each of the constraints C9 to C13 (since the ratio
range it considers possible overlaps with the
coresponding required ranges) and hence to be valid
for all speeds / = 0, 1,2 and 4 when in fact they satisfy
none of these constraints (since the actual range of
possible ratios overlaps with none of the required
ranges) and are valid for none of the speeds.

Luckily this unwarranted leniency on the part of our
program apparently does not lead to any additional
transmission designs being found acceptable. This can
be seen from Table 5, in that TRANS-FORM's seven
solutions shown there do not include any of the
non-monotonic four states. Even though these four
states are themselves (wrongly) being considered
acceptable for all speeds, the other constraints of the
problem are apparently sufficient to exclude
transmissions where they could take part. This
however is just good luck in the present version of our
problem. In general we need a more reliable approach

to checking the ratio range constraints. This should
not be difficult, as discussed in footnote 8, p. 157.

By giving all the above-mentioned information
(symbolic gear ratios p, numberical bounds for p and
the corresponding allowed speeds) for all valid states,
Table Al makes explicit most of the essential
intermediate results computed dynamically by our
algorithm. As such, Table Al provides a convenient
way of checking the results of our algorithm. Section
6.1 alluded to this in connection with the partial trace
of Figure 9. The two branches in that figure
correspond to cases 2 and 18 of Table Al. The reader
should check the correspondence between the two
branches of Figure 9 and the entries for these two
cases in Table Al.

Table Al may also be used to quickly convince
oneself that most of the other 18 valid hard link
combinations cannot have any solutions, simply
because they do not have at least one different state
capable of providing each of the required speeds i = 0,
1, 2 and 4. In particular, we see from Table Al that
hard link cases 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14 and
16 all have no states capable of providing speeds 1 or
2. That leaves only hard link cases 1, 2, 6, 15, 17 and
18. Small tree searches for cases 6 and 17, using the
corresponding information provided in Table Al,
show that neither of these cases allow a combination
of states that provide all four speeds without violating
some constraint of Section 4. Similar tree searches for
cases 1, 2, 15 and 18 show that these do have
solutions, and that these are exactly the solutions
given in Table 5 (where of course hard link cases 1, 2,
15 and 18 are the only ones represented).
Interestingly, if as we expect, solutions 6 and 7 of
Table 5 ultimately prove to be the only ones really
acceptable, then we will have that hard link case 18
was the only one of all 18 hard link configurations that
actually supported any solutions.
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